Metamath Proof Explorer


Theorem sdomne0d

Description: A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024)

Ref Expression
Hypotheses sdomne0d.a φ B A
sdomne0d.b φ B V
Assertion sdomne0d φ A

Proof

Step Hyp Ref Expression
1 sdomne0d.a φ B A
2 sdomne0d.b φ B V
3 breq1 B = B A A
4 3 biimpd B = B A A
5 4 a1i B V B = B A A
6 0sdomg B V B B
7 sdomtr B B A A
8 7 ex B B A A
9 6 8 biimtrrdi B V B B A A
10 5 9 pm2.61dne B V B A A
11 2 10 syl φ B A A
12 relsdom Rel
13 12 brrelex2i A A V
14 0sdomg A V A A
15 13 14 syl A A A
16 15 ibi A A
17 11 16 syl6 φ B A A
18 1 17 mpd φ A