Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Surreal Contributions
sdomne0d
Next ⟩
safesnsupfiss
Metamath Proof Explorer
Ascii
Unicode
Theorem
sdomne0d
Description:
A class that strictly dominates any set is not empty.
(Contributed by
RP
, 3-Sep-2024)
Ref
Expression
Hypotheses
sdomne0d.a
⊢
φ
→
B
≺
A
sdomne0d.b
⊢
φ
→
B
∈
V
Assertion
sdomne0d
⊢
φ
→
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
sdomne0d.a
⊢
φ
→
B
≺
A
2
sdomne0d.b
⊢
φ
→
B
∈
V
3
breq1
⊢
B
=
∅
→
B
≺
A
↔
∅
≺
A
4
3
biimpd
⊢
B
=
∅
→
B
≺
A
→
∅
≺
A
5
4
a1i
⊢
B
∈
V
→
B
=
∅
→
B
≺
A
→
∅
≺
A
6
0sdomg
⊢
B
∈
V
→
∅
≺
B
↔
B
≠
∅
7
sdomtr
⊢
∅
≺
B
∧
B
≺
A
→
∅
≺
A
8
7
ex
⊢
∅
≺
B
→
B
≺
A
→
∅
≺
A
9
6
8
biimtrrdi
⊢
B
∈
V
→
B
≠
∅
→
B
≺
A
→
∅
≺
A
10
5
9
pm2.61dne
⊢
B
∈
V
→
B
≺
A
→
∅
≺
A
11
2
10
syl
⊢
φ
→
B
≺
A
→
∅
≺
A
12
relsdom
⊢
Rel
⁡
≺
13
12
brrelex2i
⊢
∅
≺
A
→
A
∈
V
14
0sdomg
⊢
A
∈
V
→
∅
≺
A
↔
A
≠
∅
15
13
14
syl
⊢
∅
≺
A
→
∅
≺
A
↔
A
≠
∅
16
15
ibi
⊢
∅
≺
A
→
A
≠
∅
17
11
16
syl6
⊢
φ
→
B
≺
A
→
A
≠
∅
18
1
17
mpd
⊢
φ
→
A
≠
∅