Metamath Proof Explorer


Theorem satfn

Description: The satisfaction predicate for wff codes in the model M and the binary relation E on M is a function over suc _om . (Contributed by AV, 6-Oct-2023)

Ref Expression
Assertion satfn
|- ( ( M e. V /\ E e. W ) -> ( M Sat E ) Fn suc _om )

Proof

Step Hyp Ref Expression
1 rdgfnon
 |-  rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) Fn On
2 1 a1i
 |-  ( ( M e. V /\ E e. W ) -> rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) Fn On )
3 ordom
 |-  Ord _om
4 ordsuc
 |-  ( Ord _om <-> Ord suc _om )
5 3 4 mpbi
 |-  Ord suc _om
6 ordsson
 |-  ( Ord suc _om -> suc _om C_ On )
7 5 6 mp1i
 |-  ( ( M e. V /\ E e. W ) -> suc _om C_ On )
8 2 7 fnssresd
 |-  ( ( M e. V /\ E e. W ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |` suc _om ) Fn suc _om )
9 satf
 |-  ( ( M e. V /\ E e. W ) -> ( M Sat E ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |` suc _om ) )
10 9 fneq1d
 |-  ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) Fn suc _om <-> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |` suc _om ) Fn suc _om ) )
11 8 10 mpbird
 |-  ( ( M e. V /\ E e. W ) -> ( M Sat E ) Fn suc _om )