Metamath Proof Explorer


Theorem satf

Description: The satisfaction predicate as function over wff codes in the model M and the binary relation E on M . (Contributed by AV, 14-Sep-2023)

Ref Expression
Assertion satf
|- ( ( M e. V /\ E e. W ) -> ( M Sat E ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |` suc _om ) )

Proof

Step Hyp Ref Expression
1 df-sat
 |-  Sat = ( m e. _V , e e. _V |-> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) )
2 1 a1i
 |-  ( ( M e. V /\ E e. W ) -> Sat = ( m e. _V , e e. _V |-> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) ) )
3 oveq1
 |-  ( m = M -> ( m ^m _om ) = ( M ^m _om ) )
4 3 adantr
 |-  ( ( m = M /\ e = E ) -> ( m ^m _om ) = ( M ^m _om ) )
5 4 difeq1d
 |-  ( ( m = M /\ e = E ) -> ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) )
6 5 eqeq2d
 |-  ( ( m = M /\ e = E ) -> ( y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) )
7 6 anbi2d
 |-  ( ( m = M /\ e = E ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) )
8 7 rexbidv
 |-  ( ( m = M /\ e = E ) -> ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) )
9 simpl
 |-  ( ( m = M /\ e = E ) -> m = M )
10 9 raleqdv
 |-  ( ( m = M /\ e = E ) -> ( A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) <-> A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) ) )
11 4 10 rabeqbidv
 |-  ( ( m = M /\ e = E ) -> { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } )
12 11 eqeq2d
 |-  ( ( m = M /\ e = E ) -> ( y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) )
13 12 anbi2d
 |-  ( ( m = M /\ e = E ) -> ( ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) )
14 13 rexbidv
 |-  ( ( m = M /\ e = E ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) )
15 8 14 orbi12d
 |-  ( ( m = M /\ e = E ) -> ( ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) )
16 15 rexbidv
 |-  ( ( m = M /\ e = E ) -> ( E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) )
17 16 opabbidv
 |-  ( ( m = M /\ e = E ) -> { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } )
18 17 uneq2d
 |-  ( ( m = M /\ e = E ) -> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) )
19 18 mpteq2dv
 |-  ( ( m = M /\ e = E ) -> ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) )
20 breq
 |-  ( e = E -> ( ( a ` i ) e ( a ` j ) <-> ( a ` i ) E ( a ` j ) ) )
21 20 adantl
 |-  ( ( m = M /\ e = E ) -> ( ( a ` i ) e ( a ` j ) <-> ( a ` i ) E ( a ` j ) ) )
22 4 21 rabeqbidv
 |-  ( ( m = M /\ e = E ) -> { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } )
23 22 eqeq2d
 |-  ( ( m = M /\ e = E ) -> ( y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } <-> y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) )
24 23 anbi2d
 |-  ( ( m = M /\ e = E ) -> ( ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) <-> ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) )
25 24 2rexbidv
 |-  ( ( m = M /\ e = E ) -> ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) <-> E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) )
26 25 opabbidv
 |-  ( ( m = M /\ e = E ) -> { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } = { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } )
27 rdgeq12
 |-  ( ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) /\ { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } = { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) -> rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) = rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) )
28 19 26 27 syl2anc
 |-  ( ( m = M /\ e = E ) -> rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) = rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) )
29 28 reseq1d
 |-  ( ( m = M /\ e = E ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |` suc _om ) )
30 29 adantl
 |-  ( ( ( M e. V /\ E e. W ) /\ ( m = M /\ e = E ) ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |` suc _om ) )
31 elex
 |-  ( M e. V -> M e. _V )
32 31 adantr
 |-  ( ( M e. V /\ E e. W ) -> M e. _V )
33 elex
 |-  ( E e. W -> E e. _V )
34 33 adantl
 |-  ( ( M e. V /\ E e. W ) -> E e. _V )
35 rdgfun
 |-  Fun rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } )
36 omex
 |-  _om e. _V
37 36 sucex
 |-  suc _om e. _V
38 37 a1i
 |-  ( ( M e. V /\ E e. W ) -> suc _om e. _V )
39 resfunexg
 |-  ( ( Fun rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) /\ suc _om e. _V ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |` suc _om ) e. _V )
40 35 38 39 sylancr
 |-  ( ( M e. V /\ E e. W ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |` suc _om ) e. _V )
41 2 30 32 34 40 ovmpod
 |-  ( ( M e. V /\ E e. W ) -> ( M Sat E ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |` suc _om ) )