| Step |
Hyp |
Ref |
Expression |
| 1 |
|
satfun |
|- ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) ) |
| 2 |
|
ffvelcdm |
|- ( ( ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) /\ U e. ( Fmla ` _om ) ) -> ( ( ( M Sat E ) ` _om ) ` U ) e. ~P ( M ^m _om ) ) |
| 3 |
|
fvex |
|- ( ( ( M Sat E ) ` _om ) ` U ) e. _V |
| 4 |
3
|
elpw |
|- ( ( ( ( M Sat E ) ` _om ) ` U ) e. ~P ( M ^m _om ) <-> ( ( ( M Sat E ) ` _om ) ` U ) C_ ( M ^m _om ) ) |
| 5 |
|
ssel |
|- ( ( ( ( M Sat E ) ` _om ) ` U ) C_ ( M ^m _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S e. ( M ^m _om ) ) ) |
| 6 |
|
elmapi |
|- ( S e. ( M ^m _om ) -> S : _om --> M ) |
| 7 |
5 6
|
syl6 |
|- ( ( ( ( M Sat E ) ` _om ) ` U ) C_ ( M ^m _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) |
| 8 |
4 7
|
sylbi |
|- ( ( ( ( M Sat E ) ` _om ) ` U ) e. ~P ( M ^m _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) |
| 9 |
2 8
|
syl |
|- ( ( ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) /\ U e. ( Fmla ` _om ) ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) |
| 10 |
9
|
ex |
|- ( ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) -> ( U e. ( Fmla ` _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) ) |
| 11 |
1 10
|
syl |
|- ( ( M e. V /\ E e. W ) -> ( U e. ( Fmla ` _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) ) |
| 12 |
11
|
3imp |
|- ( ( ( M e. V /\ E e. W ) /\ U e. ( Fmla ` _om ) /\ S e. ( ( ( M Sat E ) ` _om ) ` U ) ) -> S : _om --> M ) |