Metamath Proof Explorer


Theorem satfvel

Description: An element of the value of the satisfaction predicate as function over wff codes in the model M and the binary relation E on M at the code U for a wff using e. , -/\ , A. is a valuation S :om --> M of the variables (v0 = ( S(/) ) , v_1 = ( S1o ) , etc.) so that U is true under the assignment S . (Contributed by AV, 29-Oct-2023)

Ref Expression
Assertion satfvel MVEWUFmlaωSMSatEωUS:ωM

Proof

Step Hyp Ref Expression
1 satfun MVEWMSatEω:Fmlaω𝒫Mω
2 ffvelcdm MSatEω:Fmlaω𝒫MωUFmlaωMSatEωU𝒫Mω
3 fvex MSatEωUV
4 3 elpw MSatEωU𝒫MωMSatEωUMω
5 ssel MSatEωUMωSMSatEωUSMω
6 elmapi SMωS:ωM
7 5 6 syl6 MSatEωUMωSMSatEωUS:ωM
8 4 7 sylbi MSatEωU𝒫MωSMSatEωUS:ωM
9 2 8 syl MSatEω:Fmlaω𝒫MωUFmlaωSMSatEωUS:ωM
10 9 ex MSatEω:Fmlaω𝒫MωUFmlaωSMSatEωUS:ωM
11 1 10 syl MVEWUFmlaωSMSatEωUS:ωM
12 11 3imp MVEWUFmlaωSMSatEωUS:ωM