Metamath Proof Explorer


Theorem satfv0fvfmla0

Description: The value of the satisfaction predicate as function over a wff code at (/) . (Contributed by AV, 2-Nov-2023)

Ref Expression
Hypothesis satfv0fv.s S=MSatE
Assertion satfv0fvfmla0 MVEWXFmlaSX=aMω|a1st2ndXEa2nd2ndX

Proof

Step Hyp Ref Expression
1 satfv0fv.s S=MSatE
2 satfv0fun MVEWFunMSatE
3 1 fveq1i S=MSatE
4 3 funeqi FunSFunMSatE
5 2 4 sylibr MVEWFunS
6 5 3adant3 MVEWXFmlaFunS
7 fmla0 Fmla=xV|iωjωx=i𝑔j
8 7 eleq2i XFmlaXxV|iωjωx=i𝑔j
9 eqeq1 x=Xx=i𝑔jX=i𝑔j
10 9 2rexbidv x=Xiωjωx=i𝑔jiωjωX=i𝑔j
11 10 elrab XxV|iωjωx=i𝑔jXViωjωX=i𝑔j
12 8 11 bitri XFmlaXViωjωX=i𝑔j
13 simpr iωjωX=i𝑔jX=i𝑔j
14 goel iωjωi𝑔j=ij
15 14 eqeq2d iωjωX=i𝑔jX=ij
16 2fveq3 X=ij1st2ndX=1st2ndij
17 0ex V
18 opex ijV
19 17 18 op2nd 2ndij=ij
20 19 fveq2i 1st2ndij=1stij
21 vex iV
22 vex jV
23 21 22 op1st 1stij=i
24 20 23 eqtri 1st2ndij=i
25 16 24 eqtrdi X=ij1st2ndX=i
26 25 fveq2d X=ija1st2ndX=ai
27 2fveq3 X=ij2nd2ndX=2nd2ndij
28 19 fveq2i 2nd2ndij=2ndij
29 21 22 op2nd 2ndij=j
30 28 29 eqtri 2nd2ndij=j
31 27 30 eqtrdi X=ij2nd2ndX=j
32 31 fveq2d X=ija2nd2ndX=aj
33 26 32 breq12d X=ija1st2ndXEa2nd2ndXaiEaj
34 15 33 syl6bi iωjωX=i𝑔ja1st2ndXEa2nd2ndXaiEaj
35 34 imp iωjωX=i𝑔ja1st2ndXEa2nd2ndXaiEaj
36 35 rabbidv iωjωX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
37 13 36 jca iωjωX=i𝑔jX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
38 37 ex iωjωX=i𝑔jX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
39 38 reximdva iωjωX=i𝑔jjωX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
40 39 reximia iωjωX=i𝑔jiωjωX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
41 12 40 simplbiim XFmlaiωjωX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
42 41 3ad2ant3 MVEWXFmlaiωjωX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
43 simp3 MVEWXFmlaXFmla
44 ovex MωV
45 44 rabex aMω|a1st2ndXEa2nd2ndXV
46 eqeq1 y=aMω|a1st2ndXEa2nd2ndXy=aMω|aiEajaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
47 9 46 bi2anan9 x=Xy=aMω|a1st2ndXEa2nd2ndXx=i𝑔jy=aMω|aiEajX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
48 47 2rexbidv x=Xy=aMω|a1st2ndXEa2nd2ndXiωjωx=i𝑔jy=aMω|aiEajiωjωX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
49 48 opelopabga XFmlaaMω|a1st2ndXEa2nd2ndXVXaMω|a1st2ndXEa2nd2ndXxy|iωjωx=i𝑔jy=aMω|aiEajiωjωX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
50 43 45 49 sylancl MVEWXFmlaXaMω|a1st2ndXEa2nd2ndXxy|iωjωx=i𝑔jy=aMω|aiEajiωjωX=i𝑔jaMω|a1st2ndXEa2nd2ndX=aMω|aiEaj
51 42 50 mpbird MVEWXFmlaXaMω|a1st2ndXEa2nd2ndXxy|iωjωx=i𝑔jy=aMω|aiEaj
52 1 satfv0 MVEWS=xy|iωjωx=i𝑔jy=aMω|aiEaj
53 52 eleq2d MVEWXaMω|a1st2ndXEa2nd2ndXSXaMω|a1st2ndXEa2nd2ndXxy|iωjωx=i𝑔jy=aMω|aiEaj
54 53 3adant3 MVEWXFmlaXaMω|a1st2ndXEa2nd2ndXSXaMω|a1st2ndXEa2nd2ndXxy|iωjωx=i𝑔jy=aMω|aiEaj
55 51 54 mpbird MVEWXFmlaXaMω|a1st2ndXEa2nd2ndXS
56 funopfv FunSXaMω|a1st2ndXEa2nd2ndXSSX=aMω|a1st2ndXEa2nd2ndX
57 6 55 56 sylc MVEWXFmlaSX=aMω|a1st2ndXEa2nd2ndX