Metamath Proof Explorer


Theorem satfv0fun

Description: The value of the satisfaction predicate as function over wff codes at (/) is a function. (Contributed by AV, 15-Oct-2023)

Ref Expression
Assertion satfv0fun MVEWFunMSatE

Proof

Step Hyp Ref Expression
1 funopab Funxy|iωjωx=i𝑔jy=fMω|fiEfjx*yiωjωx=i𝑔jy=fMω|fiEfj
2 oveq1 i=ki𝑔j=k𝑔j
3 2 eqeq2d i=kx=i𝑔jx=k𝑔j
4 fveq2 i=kfi=fk
5 4 breq1d i=kfiEfjfkEfj
6 5 rabbidv i=kfMω|fiEfj=fMω|fkEfj
7 6 eqeq2d i=ky=fMω|fiEfjy=fMω|fkEfj
8 3 7 anbi12d i=kx=i𝑔jy=fMω|fiEfjx=k𝑔jy=fMω|fkEfj
9 oveq2 j=lk𝑔j=k𝑔l
10 9 eqeq2d j=lx=k𝑔jx=k𝑔l
11 fveq2 j=lfj=fl
12 11 breq2d j=lfkEfjfkEfl
13 12 rabbidv j=lfMω|fkEfj=fMω|fkEfl
14 13 eqeq2d j=ly=fMω|fkEfjy=fMω|fkEfl
15 10 14 anbi12d j=lx=k𝑔jy=fMω|fkEfjx=k𝑔ly=fMω|fkEfl
16 8 15 cbvrex2vw iωjωx=i𝑔jy=fMω|fiEfjkωlωx=k𝑔ly=fMω|fkEfl
17 eqtr2 x=i𝑔jx=k𝑔li𝑔j=k𝑔l
18 goeleq12bg kωlωiωjωi𝑔j=k𝑔li=kj=l
19 4 adantr i=kj=lfi=fk
20 19 eqcomd i=kj=lfk=fi
21 11 adantl i=kj=lfj=fl
22 21 eqcomd i=kj=lfl=fj
23 20 22 breq12d i=kj=lfkEflfiEfj
24 23 rabbidv i=kj=lfMω|fkEfl=fMω|fiEfj
25 eqeq12 y=fMω|fkEflz=fMω|fiEfjy=zfMω|fkEfl=fMω|fiEfj
26 24 25 syl5ibrcom i=kj=ly=fMω|fkEflz=fMω|fiEfjy=z
27 26 expd i=kj=ly=fMω|fkEflz=fMω|fiEfjy=z
28 18 27 syl6bi kωlωiωjωi𝑔j=k𝑔ly=fMω|fkEflz=fMω|fiEfjy=z
29 17 28 syl5 kωlωiωjωx=i𝑔jx=k𝑔ly=fMω|fkEflz=fMω|fiEfjy=z
30 29 expd kωlωiωjωx=i𝑔jx=k𝑔ly=fMω|fkEflz=fMω|fiEfjy=z
31 30 imp4a kωlωiωjωx=i𝑔jx=k𝑔ly=fMω|fkEflz=fMω|fiEfjy=z
32 31 com34 kωlωiωjωx=i𝑔jz=fMω|fiEfjx=k𝑔ly=fMω|fkEfly=z
33 32 impd kωlωiωjωx=i𝑔jz=fMω|fiEfjx=k𝑔ly=fMω|fkEfly=z
34 33 rexlimdvva kωlωiωjωx=i𝑔jz=fMω|fiEfjx=k𝑔ly=fMω|fkEfly=z
35 34 com23 kωlωx=k𝑔ly=fMω|fkEfliωjωx=i𝑔jz=fMω|fiEfjy=z
36 35 rexlimivv kωlωx=k𝑔ly=fMω|fkEfliωjωx=i𝑔jz=fMω|fiEfjy=z
37 16 36 sylbi iωjωx=i𝑔jy=fMω|fiEfjiωjωx=i𝑔jz=fMω|fiEfjy=z
38 37 imp iωjωx=i𝑔jy=fMω|fiEfjiωjωx=i𝑔jz=fMω|fiEfjy=z
39 38 gen2 yziωjωx=i𝑔jy=fMω|fiEfjiωjωx=i𝑔jz=fMω|fiEfjy=z
40 eqeq1 y=zy=fMω|fiEfjz=fMω|fiEfj
41 40 anbi2d y=zx=i𝑔jy=fMω|fiEfjx=i𝑔jz=fMω|fiEfj
42 41 2rexbidv y=ziωjωx=i𝑔jy=fMω|fiEfjiωjωx=i𝑔jz=fMω|fiEfj
43 42 mo4 *yiωjωx=i𝑔jy=fMω|fiEfjyziωjωx=i𝑔jy=fMω|fiEfjiωjωx=i𝑔jz=fMω|fiEfjy=z
44 39 43 mpbir *yiωjωx=i𝑔jy=fMω|fiEfj
45 1 44 mpgbir Funxy|iωjωx=i𝑔jy=fMω|fiEfj
46 eqid MSatE=MSatE
47 46 satfv0 MVEWMSatE=xy|iωjωx=i𝑔jy=fMω|fiEfj
48 47 funeqd MVEWFunMSatEFunxy|iωjωx=i𝑔jy=fMω|fiEfj
49 45 48 mpbiri MVEWFunMSatE