Metamath Proof Explorer


Theorem satfv0

Description: The value of the satisfaction predicate as function over wff codes at (/) . (Contributed by AV, 8-Oct-2023)

Ref Expression
Hypothesis satfv0.s S=MSatE
Assertion satfv0 MVEWS=xy|iωjωx=i𝑔jy=aMω|aiEaj

Proof

Step Hyp Ref Expression
1 satfv0.s S=MSatE
2 peano1 ω
3 elelsuc ωsucω
4 2 3 mp1i MVEWsucω
5 1 satfvsucom MVEWsucωS=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEaj
6 4 5 mpd3an3 MVEWS=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEaj
7 goelel3xp iωjωi𝑔jω×ω×ω
8 eleq1 x=i𝑔jxω×ω×ωi𝑔jω×ω×ω
9 7 8 syl5ibrcom iωjωx=i𝑔jxω×ω×ω
10 9 adantrd iωjωx=i𝑔jy=aMω|aiEajxω×ω×ω
11 10 pm4.71d iωjωx=i𝑔jy=aMω|aiEajx=i𝑔jy=aMω|aiEajxω×ω×ω
12 11 2rexbiia iωjωx=i𝑔jy=aMω|aiEajiωjωx=i𝑔jy=aMω|aiEajxω×ω×ω
13 r19.41vv iωjωx=i𝑔jy=aMω|aiEajxω×ω×ωiωjωx=i𝑔jy=aMω|aiEajxω×ω×ω
14 ancom iωjωx=i𝑔jy=aMω|aiEajxω×ω×ωxω×ω×ωiωjωx=i𝑔jy=aMω|aiEaj
15 12 13 14 3bitri iωjωx=i𝑔jy=aMω|aiEajxω×ω×ωiωjωx=i𝑔jy=aMω|aiEaj
16 15 opabbii xy|iωjωx=i𝑔jy=aMω|aiEaj=xy|xω×ω×ωiωjωx=i𝑔jy=aMω|aiEaj
17 omex ωV
18 17 17 xpex ω×ωV
19 xpexg ωVω×ωVω×ω×ωV
20 oveq1 i=mi𝑔j=m𝑔j
21 20 eqeq2d i=mx=i𝑔jx=m𝑔j
22 fveq2 i=mai=am
23 22 breq1d i=maiEajamEaj
24 23 rabbidv i=maMω|aiEaj=aMω|amEaj
25 24 eqeq2d i=my=aMω|aiEajy=aMω|amEaj
26 21 25 anbi12d i=mx=i𝑔jy=aMω|aiEajx=m𝑔jy=aMω|amEaj
27 oveq2 j=nm𝑔j=m𝑔n
28 27 eqeq2d j=nx=m𝑔jx=m𝑔n
29 fveq2 j=naj=an
30 29 breq2d j=namEajamEan
31 30 rabbidv j=naMω|amEaj=aMω|amEan
32 31 eqeq2d j=ny=aMω|amEajy=aMω|amEan
33 28 32 anbi12d j=nx=m𝑔jy=aMω|amEajx=m𝑔ny=aMω|amEan
34 26 33 cbvrex2vw iωjωx=i𝑔jy=aMω|aiEajmωnωx=m𝑔ny=aMω|amEan
35 eqeq1 x=i𝑔jx=m𝑔ni𝑔j=m𝑔n
36 35 adantl mωnωiωjωx=i𝑔jx=m𝑔ni𝑔j=m𝑔n
37 goeleq12bg mωnωiωjωi𝑔j=m𝑔ni=mj=n
38 22 eqcomd i=mam=ai
39 29 eqcomd j=nan=aj
40 38 39 breqan12d i=mj=namEanaiEaj
41 40 rabbidv i=mj=naMω|amEan=aMω|aiEaj
42 37 41 syl6bi mωnωiωjωi𝑔j=m𝑔naMω|amEan=aMω|aiEaj
43 42 imp mωnωiωjωi𝑔j=m𝑔naMω|amEan=aMω|aiEaj
44 eqeq12 y=aMω|amEanz=aMω|aiEajy=zaMω|amEan=aMω|aiEaj
45 43 44 syl5ibrcom mωnωiωjωi𝑔j=m𝑔ny=aMω|amEanz=aMω|aiEajy=z
46 45 exp4b mωnωiωjωi𝑔j=m𝑔ny=aMω|amEanz=aMω|aiEajy=z
47 46 adantr mωnωiωjωx=i𝑔ji𝑔j=m𝑔ny=aMω|amEanz=aMω|aiEajy=z
48 36 47 sylbid mωnωiωjωx=i𝑔jx=m𝑔ny=aMω|amEanz=aMω|aiEajy=z
49 48 impd mωnωiωjωx=i𝑔jx=m𝑔ny=aMω|amEanz=aMω|aiEajy=z
50 49 com23 mωnωiωjωx=i𝑔jz=aMω|aiEajx=m𝑔ny=aMω|amEany=z
51 50 expimpd mωnωiωjωx=i𝑔jz=aMω|aiEajx=m𝑔ny=aMω|amEany=z
52 51 rexlimdvva mωnωiωjωx=i𝑔jz=aMω|aiEajx=m𝑔ny=aMω|amEany=z
53 52 com23 mωnωx=m𝑔ny=aMω|amEaniωjωx=i𝑔jz=aMω|aiEajy=z
54 53 rexlimivv mωnωx=m𝑔ny=aMω|amEaniωjωx=i𝑔jz=aMω|aiEajy=z
55 34 54 sylbi iωjωx=i𝑔jy=aMω|aiEajiωjωx=i𝑔jz=aMω|aiEajy=z
56 55 imp iωjωx=i𝑔jy=aMω|aiEajiωjωx=i𝑔jz=aMω|aiEajy=z
57 56 gen2 yziωjωx=i𝑔jy=aMω|aiEajiωjωx=i𝑔jz=aMω|aiEajy=z
58 eqeq1 y=zy=aMω|aiEajz=aMω|aiEaj
59 58 anbi2d y=zx=i𝑔jy=aMω|aiEajx=i𝑔jz=aMω|aiEaj
60 59 2rexbidv y=ziωjωx=i𝑔jy=aMω|aiEajiωjωx=i𝑔jz=aMω|aiEaj
61 60 mo4 *yiωjωx=i𝑔jy=aMω|aiEajyziωjωx=i𝑔jy=aMω|aiEajiωjωx=i𝑔jz=aMω|aiEajy=z
62 57 61 mpbir *yiωjωx=i𝑔jy=aMω|aiEaj
63 moabex *yiωjωx=i𝑔jy=aMω|aiEajy|iωjωx=i𝑔jy=aMω|aiEajV
64 62 63 mp1i ωVω×ωVxω×ω×ωy|iωjωx=i𝑔jy=aMω|aiEajV
65 19 64 opabex3d ωVω×ωVxy|xω×ω×ωiωjωx=i𝑔jy=aMω|aiEajV
66 17 18 65 mp2an xy|xω×ω×ωiωjωx=i𝑔jy=aMω|aiEajV
67 16 66 eqeltri xy|iωjωx=i𝑔jy=aMω|aiEajV
68 67 rdg0 recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEaj=xy|iωjωx=i𝑔jy=aMω|aiEaj
69 6 68 eqtrdi MVEWS=xy|iωjωx=i𝑔jy=aMω|aiEaj