Metamath Proof Explorer


Theorem satefv

Description: The simplified satisfaction predicate as function over wff codes in the model M at the code U . (Contributed by AV, 30-Oct-2023)

Ref Expression
Assertion satefv MVUWMSatU=MSatEM×MωU

Proof

Step Hyp Ref Expression
1 df-sate Sat=mV,uVmSatEm×mωu
2 1 a1i MVUWSat=mV,uVmSatEm×mωu
3 id m=Mm=M
4 3 sqxpeqd m=Mm×m=M×M
5 4 ineq2d m=MEm×m=EM×M
6 3 5 oveq12d m=MmSatEm×m=MSatEM×M
7 6 fveq1d m=MmSatEm×mω=MSatEM×Mω
8 7 adantr m=Mu=UmSatEm×mω=MSatEM×Mω
9 simpr m=Mu=Uu=U
10 8 9 fveq12d m=Mu=UmSatEm×mωu=MSatEM×MωU
11 10 adantl MVUWm=Mu=UmSatEm×mωu=MSatEM×MωU
12 elex MVMV
13 12 adantr MVUWMV
14 elex UWUV
15 14 adantl MVUWUV
16 fvexd MVUWMSatEM×MωUV
17 2 11 13 15 16 ovmpod MVUWMSatU=MSatEM×MωU