Metamath Proof Explorer


Theorem sate0

Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023) (Revised by AV, 5-Nov-2023)

Ref Expression
Assertion sate0 UVSatU=SatωU

Proof

Step Hyp Ref Expression
1 0ex V
2 satefv VUVSatU=SatE×ωU
3 1 2 mpan UVSatU=SatE×ωU
4 xp0 ×=
5 4 ineq2i E×=E
6 in0 E=
7 5 6 eqtri E×=
8 7 oveq2i SatE×=Sat
9 8 fveq1i SatE×ω=Satω
10 9 fveq1i SatE×ωU=SatωU
11 3 10 eqtrdi UVSatU=SatωU