Metamath Proof Explorer


Theorem sate0

Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023) (Revised by AV, 5-Nov-2023)

Ref Expression
Assertion sate0 U V Sat U = Sat ω U

Proof

Step Hyp Ref Expression
1 0ex V
2 satefv V U V Sat U = Sat E × ω U
3 1 2 mpan U V Sat U = Sat E × ω U
4 xp0 × =
5 4 ineq2i E × = E
6 in0 E =
7 5 6 eqtri E × =
8 7 oveq2i Sat E × = Sat
9 8 fveq1i Sat E × ω = Sat ω
10 9 fveq1i Sat E × ω U = Sat ω U
11 3 10 eqtrdi U V Sat U = Sat ω U