Metamath Proof Explorer


Definition df-sate

Description: A simplified version of the satisfaction predicate, using the standard membership relation and eliminating the extra variable n . (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-sate Sat=mV,uVmSatEm×mωu

Detailed syntax breakdown

Step Hyp Ref Expression
0 csate classSat
1 vm setvarm
2 cvv classV
3 vu setvaru
4 1 cv setvarm
5 csat classSat
6 cep classE
7 4 4 cxp classm×m
8 6 7 cin classEm×m
9 4 8 5 co classmSatEm×m
10 com classω
11 10 9 cfv classmSatEm×mω
12 3 cv setvaru
13 12 11 cfv classmSatEm×mωu
14 1 3 2 2 13 cmpo classmV,uVmSatEm×mωu
15 0 14 wceq wffSat=mV,uVmSatEm×mωu