Step |
Hyp |
Ref |
Expression |
1 |
|
df-sate |
⊢ Sat∈ = ( 𝑚 ∈ V , 𝑢 ∈ V ↦ ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → Sat∈ = ( 𝑚 ∈ V , 𝑢 ∈ V ↦ ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) ) ) |
3 |
|
id |
⊢ ( 𝑚 = 𝑀 → 𝑚 = 𝑀 ) |
4 |
3
|
sqxpeqd |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 × 𝑚 ) = ( 𝑀 × 𝑀 ) ) |
5 |
4
|
ineq2d |
⊢ ( 𝑚 = 𝑀 → ( E ∩ ( 𝑚 × 𝑚 ) ) = ( E ∩ ( 𝑀 × 𝑀 ) ) ) |
6 |
3 5
|
oveq12d |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) = ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ) |
7 |
6
|
fveq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) = ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑢 = 𝑈 ) → ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) = ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) |
9 |
|
simpr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 ) |
10 |
8 9
|
fveq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑢 = 𝑈 ) → ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) ∧ ( 𝑚 = 𝑀 ∧ 𝑢 = 𝑈 ) ) → ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) |
12 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
13 |
12
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → 𝑀 ∈ V ) |
14 |
|
elex |
⊢ ( 𝑈 ∈ 𝑊 → 𝑈 ∈ V ) |
15 |
14
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → 𝑈 ∈ V ) |
16 |
|
fvexd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ∈ V ) |
17 |
2 11 13 15 16
|
ovmpod |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → ( 𝑀 Sat∈ 𝑈 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) |