Step |
Hyp |
Ref |
Expression |
1 |
|
satfun |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |
2 |
|
ffvelrn |
⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ∈ 𝒫 ( 𝑀 ↑m ω ) ) |
3 |
|
fvex |
⊢ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ∈ V |
4 |
3
|
elpw |
⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ∈ 𝒫 ( 𝑀 ↑m ω ) ↔ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ⊆ ( 𝑀 ↑m ω ) ) |
5 |
|
ssel |
⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ⊆ ( 𝑀 ↑m ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 ∈ ( 𝑀 ↑m ω ) ) ) |
6 |
|
elmapi |
⊢ ( 𝑆 ∈ ( 𝑀 ↑m ω ) → 𝑆 : ω ⟶ 𝑀 ) |
7 |
5 6
|
syl6 |
⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ⊆ ( 𝑀 ↑m ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) |
8 |
4 7
|
sylbi |
⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ∈ 𝒫 ( 𝑀 ↑m ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) |
9 |
2 8
|
syl |
⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) |
10 |
9
|
ex |
⊢ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) → ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) ) |
11 |
1 10
|
syl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) ) |
12 |
11
|
3imp |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ) → 𝑆 : ω ⟶ 𝑀 ) |