| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbc2iedf.1 |
|- F/ x ph |
| 2 |
|
sbc2iedf.2 |
|- F/ y ph |
| 3 |
|
sbc2iedf.3 |
|- F/ x ch |
| 4 |
|
sbc2iedf.4 |
|- F/ y ch |
| 5 |
|
sbc2iedf.5 |
|- ( ph -> A e. V ) |
| 6 |
|
sbc2iedf.6 |
|- ( ph -> B e. W ) |
| 7 |
|
sbc2iedf.7 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
| 8 |
6
|
adantr |
|- ( ( ph /\ x = A ) -> B e. W ) |
| 9 |
7
|
anassrs |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ps <-> ch ) ) |
| 10 |
|
nfv |
|- F/ y x = A |
| 11 |
2 10
|
nfan |
|- F/ y ( ph /\ x = A ) |
| 12 |
4
|
a1i |
|- ( ( ph /\ x = A ) -> F/ y ch ) |
| 13 |
8 9 11 12
|
sbciedf |
|- ( ( ph /\ x = A ) -> ( [. B / y ]. ps <-> ch ) ) |
| 14 |
3
|
a1i |
|- ( ph -> F/ x ch ) |
| 15 |
5 13 1 14
|
sbciedf |
|- ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) |