Metamath Proof Explorer


Theorem sbc2iedf

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Hypotheses sbc2iedf.1
|- F/ x ph
sbc2iedf.2
|- F/ y ph
sbc2iedf.3
|- F/ x ch
sbc2iedf.4
|- F/ y ch
sbc2iedf.5
|- ( ph -> A e. V )
sbc2iedf.6
|- ( ph -> B e. W )
sbc2iedf.7
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
Assertion sbc2iedf
|- ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 sbc2iedf.1
 |-  F/ x ph
2 sbc2iedf.2
 |-  F/ y ph
3 sbc2iedf.3
 |-  F/ x ch
4 sbc2iedf.4
 |-  F/ y ch
5 sbc2iedf.5
 |-  ( ph -> A e. V )
6 sbc2iedf.6
 |-  ( ph -> B e. W )
7 sbc2iedf.7
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
8 6 adantr
 |-  ( ( ph /\ x = A ) -> B e. W )
9 7 anassrs
 |-  ( ( ( ph /\ x = A ) /\ y = B ) -> ( ps <-> ch ) )
10 nfv
 |-  F/ y x = A
11 2 10 nfan
 |-  F/ y ( ph /\ x = A )
12 4 a1i
 |-  ( ( ph /\ x = A ) -> F/ y ch )
13 8 9 11 12 sbciedf
 |-  ( ( ph /\ x = A ) -> ( [. B / y ]. ps <-> ch ) )
14 3 a1i
 |-  ( ph -> F/ x ch )
15 5 13 1 14 sbciedf
 |-  ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) )