| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc2iedf.1 |  |-  F/ x ph | 
						
							| 2 |  | sbc2iedf.2 |  |-  F/ y ph | 
						
							| 3 |  | sbc2iedf.3 |  |-  F/ x ch | 
						
							| 4 |  | sbc2iedf.4 |  |-  F/ y ch | 
						
							| 5 |  | sbc2iedf.5 |  |-  ( ph -> A e. V ) | 
						
							| 6 |  | sbc2iedf.6 |  |-  ( ph -> B e. W ) | 
						
							| 7 |  | sbc2iedf.7 |  |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) | 
						
							| 8 | 6 | adantr |  |-  ( ( ph /\ x = A ) -> B e. W ) | 
						
							| 9 | 7 | anassrs |  |-  ( ( ( ph /\ x = A ) /\ y = B ) -> ( ps <-> ch ) ) | 
						
							| 10 |  | nfv |  |-  F/ y x = A | 
						
							| 11 | 2 10 | nfan |  |-  F/ y ( ph /\ x = A ) | 
						
							| 12 | 4 | a1i |  |-  ( ( ph /\ x = A ) -> F/ y ch ) | 
						
							| 13 | 8 9 11 12 | sbciedf |  |-  ( ( ph /\ x = A ) -> ( [. B / y ]. ps <-> ch ) ) | 
						
							| 14 | 3 | a1i |  |-  ( ph -> F/ x ch ) | 
						
							| 15 | 5 13 1 14 | sbciedf |  |-  ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) |