Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbc2iedf.1 | |- F/ x ph |
|
sbc2iedf.2 | |- F/ y ph |
||
sbc2iedf.3 | |- F/ x ch |
||
sbc2iedf.4 | |- F/ y ch |
||
sbc2iedf.5 | |- ( ph -> A e. V ) |
||
sbc2iedf.6 | |- ( ph -> B e. W ) |
||
sbc2iedf.7 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
||
Assertion | sbc2iedf | |- ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2iedf.1 | |- F/ x ph |
|
2 | sbc2iedf.2 | |- F/ y ph |
|
3 | sbc2iedf.3 | |- F/ x ch |
|
4 | sbc2iedf.4 | |- F/ y ch |
|
5 | sbc2iedf.5 | |- ( ph -> A e. V ) |
|
6 | sbc2iedf.6 | |- ( ph -> B e. W ) |
|
7 | sbc2iedf.7 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
|
8 | 6 | adantr | |- ( ( ph /\ x = A ) -> B e. W ) |
9 | 7 | anassrs | |- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ps <-> ch ) ) |
10 | nfv | |- F/ y x = A |
|
11 | 2 10 | nfan | |- F/ y ( ph /\ x = A ) |
12 | 4 | a1i | |- ( ( ph /\ x = A ) -> F/ y ch ) |
13 | 8 9 11 12 | sbciedf | |- ( ( ph /\ x = A ) -> ( [. B / y ]. ps <-> ch ) ) |
14 | 3 | a1i | |- ( ph -> F/ x ch ) |
15 | 5 13 1 14 | sbciedf | |- ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) |