Metamath Proof Explorer


Theorem rspc2daf

Description: Double restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Hypotheses sbc2iedf.1
|- F/ x ph
sbc2iedf.2
|- F/ y ph
sbc2iedf.3
|- F/ x ch
sbc2iedf.4
|- F/ y ch
sbc2iedf.5
|- ( ph -> A e. V )
sbc2iedf.6
|- ( ph -> B e. W )
sbc2iedf.7
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
rspc2daf.8
|- ( ph -> A. x e. V A. y e. W ps )
Assertion rspc2daf
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 sbc2iedf.1
 |-  F/ x ph
2 sbc2iedf.2
 |-  F/ y ph
3 sbc2iedf.3
 |-  F/ x ch
4 sbc2iedf.4
 |-  F/ y ch
5 sbc2iedf.5
 |-  ( ph -> A e. V )
6 sbc2iedf.6
 |-  ( ph -> B e. W )
7 sbc2iedf.7
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
8 rspc2daf.8
 |-  ( ph -> A. x e. V A. y e. W ps )
9 nfcv
 |-  F/_ x W
10 nfsbc1v
 |-  F/ x [. A / x ]. ps
11 9 10 nfralw
 |-  F/ x A. y e. W [. A / x ]. ps
12 nfv
 |-  F/ y x = A
13 2 12 nfan
 |-  F/ y ( ph /\ x = A )
14 sbceq1a
 |-  ( x = A -> ( ps <-> [. A / x ]. ps ) )
15 14 adantl
 |-  ( ( ph /\ x = A ) -> ( ps <-> [. A / x ]. ps ) )
16 13 15 ralbid
 |-  ( ( ph /\ x = A ) -> ( A. y e. W ps <-> A. y e. W [. A / x ]. ps ) )
17 1 11 5 16 rspcdf
 |-  ( ph -> ( A. x e. V A. y e. W ps -> A. y e. W [. A / x ]. ps ) )
18 8 17 mpd
 |-  ( ph -> A. y e. W [. A / x ]. ps )
19 nfsbc1v
 |-  F/ y [. B / y ]. [. A / x ]. ps
20 sbceq1a
 |-  ( y = B -> ( [. A / x ]. ps <-> [. B / y ]. [. A / x ]. ps ) )
21 20 adantl
 |-  ( ( ph /\ y = B ) -> ( [. A / x ]. ps <-> [. B / y ]. [. A / x ]. ps ) )
22 2 19 6 21 rspcdf
 |-  ( ph -> ( A. y e. W [. A / x ]. ps -> [. B / y ]. [. A / x ]. ps ) )
23 18 22 mpd
 |-  ( ph -> [. B / y ]. [. A / x ]. ps )
24 1 2 3 4 5 6 7 sbc2iedf
 |-  ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) )
25 sbccom
 |-  ( [. A / x ]. [. B / y ]. ps <-> [. B / y ]. [. A / x ]. ps )
26 24 25 bitr3di
 |-  ( ph -> ( ch <-> [. B / y ]. [. A / x ]. ps ) )
27 23 26 mpbird
 |-  ( ph -> ch )