| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc2iedf.1 |  |-  F/ x ph | 
						
							| 2 |  | sbc2iedf.2 |  |-  F/ y ph | 
						
							| 3 |  | sbc2iedf.3 |  |-  F/ x ch | 
						
							| 4 |  | sbc2iedf.4 |  |-  F/ y ch | 
						
							| 5 |  | sbc2iedf.5 |  |-  ( ph -> A e. V ) | 
						
							| 6 |  | sbc2iedf.6 |  |-  ( ph -> B e. W ) | 
						
							| 7 |  | sbc2iedf.7 |  |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) | 
						
							| 8 |  | rspc2daf.8 |  |-  ( ph -> A. x e. V A. y e. W ps ) | 
						
							| 9 |  | nfcv |  |-  F/_ x W | 
						
							| 10 |  | nfsbc1v |  |-  F/ x [. A / x ]. ps | 
						
							| 11 | 9 10 | nfralw |  |-  F/ x A. y e. W [. A / x ]. ps | 
						
							| 12 |  | nfv |  |-  F/ y x = A | 
						
							| 13 | 2 12 | nfan |  |-  F/ y ( ph /\ x = A ) | 
						
							| 14 |  | sbceq1a |  |-  ( x = A -> ( ps <-> [. A / x ]. ps ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ x = A ) -> ( ps <-> [. A / x ]. ps ) ) | 
						
							| 16 | 13 15 | ralbid |  |-  ( ( ph /\ x = A ) -> ( A. y e. W ps <-> A. y e. W [. A / x ]. ps ) ) | 
						
							| 17 | 1 11 5 16 | rspcdf |  |-  ( ph -> ( A. x e. V A. y e. W ps -> A. y e. W [. A / x ]. ps ) ) | 
						
							| 18 | 8 17 | mpd |  |-  ( ph -> A. y e. W [. A / x ]. ps ) | 
						
							| 19 |  | nfsbc1v |  |-  F/ y [. B / y ]. [. A / x ]. ps | 
						
							| 20 |  | sbceq1a |  |-  ( y = B -> ( [. A / x ]. ps <-> [. B / y ]. [. A / x ]. ps ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ y = B ) -> ( [. A / x ]. ps <-> [. B / y ]. [. A / x ]. ps ) ) | 
						
							| 22 | 2 19 6 21 | rspcdf |  |-  ( ph -> ( A. y e. W [. A / x ]. ps -> [. B / y ]. [. A / x ]. ps ) ) | 
						
							| 23 | 18 22 | mpd |  |-  ( ph -> [. B / y ]. [. A / x ]. ps ) | 
						
							| 24 | 1 2 3 4 5 6 7 | sbc2iedf |  |-  ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) | 
						
							| 25 |  | sbccom |  |-  ( [. A / x ]. [. B / y ]. ps <-> [. B / y ]. [. A / x ]. ps ) | 
						
							| 26 | 24 25 | bitr3di |  |-  ( ph -> ( ch <-> [. B / y ]. [. A / x ]. ps ) ) | 
						
							| 27 | 23 26 | mpbird |  |-  ( ph -> ch ) |