Step |
Hyp |
Ref |
Expression |
1 |
|
sbc2iedf.1 |
|- F/ x ph |
2 |
|
sbc2iedf.2 |
|- F/ y ph |
3 |
|
sbc2iedf.3 |
|- F/ x ch |
4 |
|
sbc2iedf.4 |
|- F/ y ch |
5 |
|
sbc2iedf.5 |
|- ( ph -> A e. V ) |
6 |
|
sbc2iedf.6 |
|- ( ph -> B e. W ) |
7 |
|
sbc2iedf.7 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
8 |
|
rspc2daf.8 |
|- ( ph -> A. x e. V A. y e. W ps ) |
9 |
|
nfcv |
|- F/_ x W |
10 |
|
nfsbc1v |
|- F/ x [. A / x ]. ps |
11 |
9 10
|
nfralw |
|- F/ x A. y e. W [. A / x ]. ps |
12 |
|
nfv |
|- F/ y x = A |
13 |
2 12
|
nfan |
|- F/ y ( ph /\ x = A ) |
14 |
|
sbceq1a |
|- ( x = A -> ( ps <-> [. A / x ]. ps ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ x = A ) -> ( ps <-> [. A / x ]. ps ) ) |
16 |
13 15
|
ralbid |
|- ( ( ph /\ x = A ) -> ( A. y e. W ps <-> A. y e. W [. A / x ]. ps ) ) |
17 |
1 11 5 16
|
rspcdf |
|- ( ph -> ( A. x e. V A. y e. W ps -> A. y e. W [. A / x ]. ps ) ) |
18 |
8 17
|
mpd |
|- ( ph -> A. y e. W [. A / x ]. ps ) |
19 |
|
nfsbc1v |
|- F/ y [. B / y ]. [. A / x ]. ps |
20 |
|
sbceq1a |
|- ( y = B -> ( [. A / x ]. ps <-> [. B / y ]. [. A / x ]. ps ) ) |
21 |
20
|
adantl |
|- ( ( ph /\ y = B ) -> ( [. A / x ]. ps <-> [. B / y ]. [. A / x ]. ps ) ) |
22 |
2 19 6 21
|
rspcdf |
|- ( ph -> ( A. y e. W [. A / x ]. ps -> [. B / y ]. [. A / x ]. ps ) ) |
23 |
18 22
|
mpd |
|- ( ph -> [. B / y ]. [. A / x ]. ps ) |
24 |
1 2 3 4 5 6 7
|
sbc2iedf |
|- ( ph -> ( [. A / x ]. [. B / y ]. ps <-> ch ) ) |
25 |
|
sbccom |
|- ( [. A / x ]. [. B / y ]. ps <-> [. B / y ]. [. A / x ]. ps ) |
26 |
24 25
|
bitr3di |
|- ( ph -> ( ch <-> [. B / y ]. [. A / x ]. ps ) ) |
27 |
23 26
|
mpbird |
|- ( ph -> ch ) |