Metamath Proof Explorer


Theorem rspc2daf

Description: Double restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Hypotheses sbc2iedf.1 xφ
sbc2iedf.2 yφ
sbc2iedf.3 xχ
sbc2iedf.4 yχ
sbc2iedf.5 φAV
sbc2iedf.6 φBW
sbc2iedf.7 φx=Ay=Bψχ
rspc2daf.8 φxVyWψ
Assertion rspc2daf φχ

Proof

Step Hyp Ref Expression
1 sbc2iedf.1 xφ
2 sbc2iedf.2 yφ
3 sbc2iedf.3 xχ
4 sbc2iedf.4 yχ
5 sbc2iedf.5 φAV
6 sbc2iedf.6 φBW
7 sbc2iedf.7 φx=Ay=Bψχ
8 rspc2daf.8 φxVyWψ
9 nfcv _xW
10 nfsbc1v x[˙A/x]˙ψ
11 9 10 nfralw xyW[˙A/x]˙ψ
12 nfv yx=A
13 2 12 nfan yφx=A
14 sbceq1a x=Aψ[˙A/x]˙ψ
15 14 adantl φx=Aψ[˙A/x]˙ψ
16 13 15 ralbid φx=AyWψyW[˙A/x]˙ψ
17 1 11 5 16 rspcdf φxVyWψyW[˙A/x]˙ψ
18 8 17 mpd φyW[˙A/x]˙ψ
19 nfsbc1v y[˙B/y]˙[˙A/x]˙ψ
20 sbceq1a y=B[˙A/x]˙ψ[˙B/y]˙[˙A/x]˙ψ
21 20 adantl φy=B[˙A/x]˙ψ[˙B/y]˙[˙A/x]˙ψ
22 2 19 6 21 rspcdf φyW[˙A/x]˙ψ[˙B/y]˙[˙A/x]˙ψ
23 18 22 mpd φ[˙B/y]˙[˙A/x]˙ψ
24 1 2 3 4 5 6 7 sbc2iedf φ[˙A/x]˙[˙B/y]˙ψχ
25 sbccom [˙A/x]˙[˙B/y]˙ψ[˙B/y]˙[˙A/x]˙ψ
26 24 25 bitr3di φχ[˙B/y]˙[˙A/x]˙ψ
27 23 26 mpbird φχ