| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc2iedf.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | sbc2iedf.2 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 3 |  | sbc2iedf.3 | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 4 |  | sbc2iedf.4 | ⊢ Ⅎ 𝑦 𝜒 | 
						
							| 5 |  | sbc2iedf.5 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | sbc2iedf.6 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 7 |  | sbc2iedf.7 | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 8 |  | rspc2daf.8 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑊 𝜓 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝑊 | 
						
							| 10 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝐴  /  𝑥 ] 𝜓 | 
						
							| 11 | 9 10 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦  ∈  𝑊 [ 𝐴  /  𝑥 ] 𝜓 | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  =  𝐴 | 
						
							| 13 | 2 12 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝑥  =  𝐴 ) | 
						
							| 14 |  | sbceq1a | ⊢ ( 𝑥  =  𝐴  →  ( 𝜓  ↔  [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 16 | 13 15 | ralbid | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( ∀ 𝑦  ∈  𝑊 𝜓  ↔  ∀ 𝑦  ∈  𝑊 [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 17 | 1 11 5 16 | rspcdf | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑊 𝜓  →  ∀ 𝑦  ∈  𝑊 [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 18 | 8 17 | mpd | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑊 [ 𝐴  /  𝑥 ] 𝜓 ) | 
						
							| 19 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜓 | 
						
							| 20 |  | sbceq1a | ⊢ ( 𝑦  =  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝜓  ↔  [ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐵 )  →  ( [ 𝐴  /  𝑥 ] 𝜓  ↔  [ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 22 | 2 19 6 21 | rspcdf | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝑊 [ 𝐴  /  𝑥 ] 𝜓  →  [ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 23 | 18 22 | mpd | ⊢ ( 𝜑  →  [ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜓 ) | 
						
							| 24 | 1 2 3 4 5 6 7 | sbc2iedf | ⊢ ( 𝜑  →  ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜓  ↔  𝜒 ) ) | 
						
							| 25 |  | sbccom | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜓  ↔  [ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜓 ) | 
						
							| 26 | 24 25 | bitr3di | ⊢ ( 𝜑  →  ( 𝜒  ↔  [ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 27 | 23 26 | mpbird | ⊢ ( 𝜑  →  𝜒 ) |