Step |
Hyp |
Ref |
Expression |
1 |
|
sbc2iedf.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sbc2iedf.2 |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
sbc2iedf.3 |
⊢ Ⅎ 𝑥 𝜒 |
4 |
|
sbc2iedf.4 |
⊢ Ⅎ 𝑦 𝜒 |
5 |
|
sbc2iedf.5 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
sbc2iedf.6 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
7 |
|
sbc2iedf.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
8 |
|
rspc2daf.8 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑊 𝜓 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑊 |
10 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜓 |
11 |
9 10
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑊 [ 𝐴 / 𝑥 ] 𝜓 |
12 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = 𝐴 |
13 |
2 12
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
14 |
|
sbceq1a |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
16 |
13 15
|
ralbid |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ∀ 𝑦 ∈ 𝑊 𝜓 ↔ ∀ 𝑦 ∈ 𝑊 [ 𝐴 / 𝑥 ] 𝜓 ) ) |
17 |
1 11 5 16
|
rspcdf |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑊 𝜓 → ∀ 𝑦 ∈ 𝑊 [ 𝐴 / 𝑥 ] 𝜓 ) ) |
18 |
8 17
|
mpd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑊 [ 𝐴 / 𝑥 ] 𝜓 ) |
19 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜓 |
20 |
|
sbceq1a |
⊢ ( 𝑦 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜓 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜓 ) ) |
22 |
2 19 6 21
|
rspcdf |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑊 [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜓 ) ) |
23 |
18 22
|
mpd |
⊢ ( 𝜑 → [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜓 ) |
24 |
1 2 3 4 5 6 7
|
sbc2iedf |
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
25 |
|
sbccom |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜓 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜓 ) |
26 |
24 25
|
bitr3di |
⊢ ( 𝜑 → ( 𝜒 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜓 ) ) |
27 |
23 26
|
mpbird |
⊢ ( 𝜑 → 𝜒 ) |