Step |
Hyp |
Ref |
Expression |
1 |
|
sbc2iedf.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sbc2iedf.2 |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
sbc2iedf.3 |
⊢ Ⅎ 𝑥 𝜒 |
4 |
|
sbc2iedf.4 |
⊢ Ⅎ 𝑦 𝜒 |
5 |
|
sbc2iedf.5 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
sbc2iedf.6 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
7 |
|
sbc2iedf.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
8 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑊 ) |
9 |
7
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = 𝐴 |
11 |
2 10
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
12 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → Ⅎ 𝑦 𝜒 ) |
13 |
8 9 11 12
|
sbciedf |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
14 |
3
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
15 |
5 13 1 14
|
sbciedf |
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |