| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc2iedf.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | sbc2iedf.2 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 3 |  | sbc2iedf.3 | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 4 |  | sbc2iedf.4 | ⊢ Ⅎ 𝑦 𝜒 | 
						
							| 5 |  | sbc2iedf.5 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | sbc2iedf.6 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 7 |  | sbc2iedf.7 | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 8 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝐵  ∈  𝑊 ) | 
						
							| 9 | 7 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∧  𝑦  =  𝐵 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  =  𝐴 | 
						
							| 11 | 2 10 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝑥  =  𝐴 ) | 
						
							| 12 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  Ⅎ 𝑦 𝜒 ) | 
						
							| 13 | 8 9 11 12 | sbciedf | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( [ 𝐵  /  𝑦 ] 𝜓  ↔  𝜒 ) ) | 
						
							| 14 | 3 | a1i | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜒 ) | 
						
							| 15 | 5 13 1 14 | sbciedf | ⊢ ( 𝜑  →  ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜓  ↔  𝜒 ) ) |