Metamath Proof Explorer


Theorem nelbOLDOLD

Description: Obsolete version of nelb as of 23-Jan-2024. (Contributed by Thierry Arnoux, 20-Nov-2023) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nelbOLDOLD ( ¬ 𝐴𝐵 ↔ ∀ 𝑥𝐵 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐵 ¬ 𝑥 = 𝐴 ↔ ∀ 𝑥 ( 𝑥𝐵 → ¬ 𝑥 = 𝐴 ) )
2 df-ne ( 𝑥𝐴 ↔ ¬ 𝑥 = 𝐴 )
3 2 ralbii ( ∀ 𝑥𝐵 𝑥𝐴 ↔ ∀ 𝑥𝐵 ¬ 𝑥 = 𝐴 )
4 dfclel ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) )
5 4 notbii ( ¬ 𝐴𝐵 ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) )
6 alnex ( ∀ 𝑥 ¬ ( 𝑥 = 𝐴𝑥𝐵 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) )
7 imnan ( ( 𝑥𝐵 → ¬ 𝑥 = 𝐴 ) ↔ ¬ ( 𝑥𝐵𝑥 = 𝐴 ) )
8 ancom ( ( 𝑥𝐵𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴𝑥𝐵 ) )
9 8 notbii ( ¬ ( 𝑥𝐵𝑥 = 𝐴 ) ↔ ¬ ( 𝑥 = 𝐴𝑥𝐵 ) )
10 7 9 bitr2i ( ¬ ( 𝑥 = 𝐴𝑥𝐵 ) ↔ ( 𝑥𝐵 → ¬ 𝑥 = 𝐴 ) )
11 10 albii ( ∀ 𝑥 ¬ ( 𝑥 = 𝐴𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ¬ 𝑥 = 𝐴 ) )
12 5 6 11 3bitr2i ( ¬ 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐵 → ¬ 𝑥 = 𝐴 ) )
13 1 3 12 3bitr4ri ( ¬ 𝐴𝐵 ↔ ∀ 𝑥𝐵 𝑥𝐴 )