Step |
Hyp |
Ref |
Expression |
1 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴 ) ) |
2 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴 ) |
3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴 ) |
4 |
|
dfclel |
⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
5 |
4
|
notbii |
⊢ ( ¬ 𝐴 ∈ 𝐵 ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
6 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
7 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) |
8 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
9 |
8
|
notbii |
⊢ ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ¬ ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
10 |
7 9
|
bitr2i |
⊢ ( ¬ ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴 ) ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴 ) ) |
12 |
5 6 11
|
3bitr2i |
⊢ ( ¬ 𝐴 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴 ) ) |
13 |
1 3 12
|
3bitr4ri |
⊢ ( ¬ 𝐴 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ) |