Metamath Proof Explorer


Theorem nelbOLDOLD

Description: Obsolete version of nelb as of 23-Jan-2024. (Contributed by Thierry Arnoux, 20-Nov-2023) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nelbOLDOLD
|- ( -. A e. B <-> A. x e. B x =/= A )

Proof

Step Hyp Ref Expression
1 df-ral
 |-  ( A. x e. B -. x = A <-> A. x ( x e. B -> -. x = A ) )
2 df-ne
 |-  ( x =/= A <-> -. x = A )
3 2 ralbii
 |-  ( A. x e. B x =/= A <-> A. x e. B -. x = A )
4 dfclel
 |-  ( A e. B <-> E. x ( x = A /\ x e. B ) )
5 4 notbii
 |-  ( -. A e. B <-> -. E. x ( x = A /\ x e. B ) )
6 alnex
 |-  ( A. x -. ( x = A /\ x e. B ) <-> -. E. x ( x = A /\ x e. B ) )
7 imnan
 |-  ( ( x e. B -> -. x = A ) <-> -. ( x e. B /\ x = A ) )
8 ancom
 |-  ( ( x e. B /\ x = A ) <-> ( x = A /\ x e. B ) )
9 8 notbii
 |-  ( -. ( x e. B /\ x = A ) <-> -. ( x = A /\ x e. B ) )
10 7 9 bitr2i
 |-  ( -. ( x = A /\ x e. B ) <-> ( x e. B -> -. x = A ) )
11 10 albii
 |-  ( A. x -. ( x = A /\ x e. B ) <-> A. x ( x e. B -> -. x = A ) )
12 5 6 11 3bitr2i
 |-  ( -. A e. B <-> A. x ( x e. B -> -. x = A ) )
13 1 3 12 3bitr4ri
 |-  ( -. A e. B <-> A. x e. B x =/= A )