| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcex |  |-  ( [. A / x ]. ph -> A e. _V ) | 
						
							| 2 |  | exsimpl |  |-  ( E. x ( x = A /\ ph ) -> E. x x = A ) | 
						
							| 3 |  | isset |  |-  ( A e. _V <-> E. x x = A ) | 
						
							| 4 | 2 3 | sylibr |  |-  ( E. x ( x = A /\ ph ) -> A e. _V ) | 
						
							| 5 |  | dfsbcq2 |  |-  ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) | 
						
							| 6 |  | eqeq2 |  |-  ( y = A -> ( x = y <-> x = A ) ) | 
						
							| 7 | 6 | anbi1d |  |-  ( y = A -> ( ( x = y /\ ph ) <-> ( x = A /\ ph ) ) ) | 
						
							| 8 | 7 | exbidv |  |-  ( y = A -> ( E. x ( x = y /\ ph ) <-> E. x ( x = A /\ ph ) ) ) | 
						
							| 9 |  | sb5 |  |-  ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) | 
						
							| 10 | 5 8 9 | vtoclbg |  |-  ( A e. _V -> ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) ) | 
						
							| 11 | 1 4 10 | pm5.21nii |  |-  ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) |