Step |
Hyp |
Ref |
Expression |
1 |
|
spsbc |
|- ( A e. V -> ( A. x ( x = A -> x = B ) -> [. A / x ]. ( x = A -> x = B ) ) ) |
2 |
|
sbcimg |
|- ( A e. V -> ( [. A / x ]. ( x = A -> x = B ) <-> ( [. A / x ]. x = A -> [. A / x ]. x = B ) ) ) |
3 |
|
eqid |
|- A = A |
4 |
|
eqsbc3 |
|- ( A e. V -> ( [. A / x ]. x = A <-> A = A ) ) |
5 |
3 4
|
mpbiri |
|- ( A e. V -> [. A / x ]. x = A ) |
6 |
|
pm5.5 |
|- ( [. A / x ]. x = A -> ( ( [. A / x ]. x = A -> [. A / x ]. x = B ) <-> [. A / x ]. x = B ) ) |
7 |
5 6
|
syl |
|- ( A e. V -> ( ( [. A / x ]. x = A -> [. A / x ]. x = B ) <-> [. A / x ]. x = B ) ) |
8 |
|
eqsbc3 |
|- ( A e. V -> ( [. A / x ]. x = B <-> A = B ) ) |
9 |
2 7 8
|
3bitrd |
|- ( A e. V -> ( [. A / x ]. ( x = A -> x = B ) <-> A = B ) ) |
10 |
1 9
|
sylibd |
|- ( A e. V -> ( A. x ( x = A -> x = B ) -> A = B ) ) |