| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcex |
|- ( [. A / x ]. E! y e. B ph -> A e. _V ) |
| 2 |
|
reurex |
|- ( E! y e. B [. A / x ]. ph -> E. y e. B [. A / x ]. ph ) |
| 3 |
|
sbcex |
|- ( [. A / x ]. ph -> A e. _V ) |
| 4 |
3
|
rexlimivw |
|- ( E. y e. B [. A / x ]. ph -> A e. _V ) |
| 5 |
2 4
|
syl |
|- ( E! y e. B [. A / x ]. ph -> A e. _V ) |
| 6 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / x ] E! y e. B ph <-> [. A / x ]. E! y e. B ph ) ) |
| 7 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / x ] ph <-> [. A / x ]. ph ) ) |
| 8 |
7
|
reubidv |
|- ( z = A -> ( E! y e. B [ z / x ] ph <-> E! y e. B [. A / x ]. ph ) ) |
| 9 |
|
nfcv |
|- F/_ x B |
| 10 |
|
nfs1v |
|- F/ x [ z / x ] ph |
| 11 |
9 10
|
nfreuw |
|- F/ x E! y e. B [ z / x ] ph |
| 12 |
|
sbequ12 |
|- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
| 13 |
12
|
reubidv |
|- ( x = z -> ( E! y e. B ph <-> E! y e. B [ z / x ] ph ) ) |
| 14 |
11 13
|
sbiev |
|- ( [ z / x ] E! y e. B ph <-> E! y e. B [ z / x ] ph ) |
| 15 |
6 8 14
|
vtoclbg |
|- ( A e. _V -> ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph ) ) |
| 16 |
1 5 15
|
pm5.21nii |
|- ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph ) |