Metamath Proof Explorer


Theorem sbcreu

Description: Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcreu
|- ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph )

Proof

Step Hyp Ref Expression
1 sbcex
 |-  ( [. A / x ]. E! y e. B ph -> A e. _V )
2 reurex
 |-  ( E! y e. B [. A / x ]. ph -> E. y e. B [. A / x ]. ph )
3 sbcex
 |-  ( [. A / x ]. ph -> A e. _V )
4 3 rexlimivw
 |-  ( E. y e. B [. A / x ]. ph -> A e. _V )
5 2 4 syl
 |-  ( E! y e. B [. A / x ]. ph -> A e. _V )
6 dfsbcq2
 |-  ( z = A -> ( [ z / x ] E! y e. B ph <-> [. A / x ]. E! y e. B ph ) )
7 dfsbcq2
 |-  ( z = A -> ( [ z / x ] ph <-> [. A / x ]. ph ) )
8 7 reubidv
 |-  ( z = A -> ( E! y e. B [ z / x ] ph <-> E! y e. B [. A / x ]. ph ) )
9 nfcv
 |-  F/_ x B
10 nfs1v
 |-  F/ x [ z / x ] ph
11 9 10 nfreuw
 |-  F/ x E! y e. B [ z / x ] ph
12 sbequ12
 |-  ( x = z -> ( ph <-> [ z / x ] ph ) )
13 12 reubidv
 |-  ( x = z -> ( E! y e. B ph <-> E! y e. B [ z / x ] ph ) )
14 11 13 sbiev
 |-  ( [ z / x ] E! y e. B ph <-> E! y e. B [ z / x ] ph )
15 6 8 14 vtoclbg
 |-  ( A e. _V -> ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph ) )
16 1 5 15 pm5.21nii
 |-  ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph )