| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V ) |
| 2 |
|
reurex |
⊢ ( ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |
| 3 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| 4 |
3
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| 5 |
2 4
|
syl |
⊢ ( ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| 6 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝐴 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ) ) |
| 7 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 8 |
7
|
reubidv |
⊢ ( 𝑧 = 𝐴 → ( ∃! 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 10 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
| 11 |
9 10
|
nfreuw |
⊢ Ⅎ 𝑥 ∃! 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 |
| 12 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 13 |
12
|
reubidv |
⊢ ( 𝑥 = 𝑧 → ( ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 14 |
11 13
|
sbiev |
⊢ ( [ 𝑧 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 15 |
6 8 14
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 16 |
1 5 15
|
pm5.21nii |
⊢ ( [ 𝐴 / 𝑥 ] ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |