Metamath Proof Explorer


Theorem sbequ2OLD

Description: Obsolete version of sbequ2 as of 3-Feb-2024. (Contributed by NM, 16-May-1993) (Proof shortened by Wolf Lammen, 25-Feb-2018) Revise df-sb . (Revised by BJ, 22-Dec-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbequ2OLD
|- ( x = t -> ( [ t / x ] ph -> ph ) )

Proof

Step Hyp Ref Expression
1 equvinva
 |-  ( x = t -> E. y ( x = y /\ t = y ) )
2 df-sb
 |-  ( [ t / x ] ph <-> A. y ( y = t -> A. x ( x = y -> ph ) ) )
3 equcomi
 |-  ( t = y -> y = t )
4 sp
 |-  ( A. x ( x = y -> ph ) -> ( x = y -> ph ) )
5 3 4 imim12i
 |-  ( ( y = t -> A. x ( x = y -> ph ) ) -> ( t = y -> ( x = y -> ph ) ) )
6 5 impcomd
 |-  ( ( y = t -> A. x ( x = y -> ph ) ) -> ( ( x = y /\ t = y ) -> ph ) )
7 6 alimi
 |-  ( A. y ( y = t -> A. x ( x = y -> ph ) ) -> A. y ( ( x = y /\ t = y ) -> ph ) )
8 2 7 sylbi
 |-  ( [ t / x ] ph -> A. y ( ( x = y /\ t = y ) -> ph ) )
9 19.23v
 |-  ( A. y ( ( x = y /\ t = y ) -> ph ) <-> ( E. y ( x = y /\ t = y ) -> ph ) )
10 8 9 sylib
 |-  ( [ t / x ] ph -> ( E. y ( x = y /\ t = y ) -> ph ) )
11 1 10 syl5com
 |-  ( x = t -> ( [ t / x ] ph -> ph ) )