Metamath Proof Explorer


Theorem sbfal

Description: Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019)

Ref Expression
Hypothesis sbfal.1
|- A e. _V
Assertion sbfal
|- ( [. A / x ]. F. <-> F. )

Proof

Step Hyp Ref Expression
1 sbfal.1
 |-  A e. _V
2 sbcg
 |-  ( A e. _V -> ( [. A / x ]. F. <-> F. ) )
3 1 2 ax-mp
 |-  ( [. A / x ]. F. <-> F. )