Metamath Proof Explorer


Theorem sbfal

Description: Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019)

Ref Expression
Hypothesis sbfal.1 𝐴 ∈ V
Assertion sbfal ( [ 𝐴 / 𝑥 ] ⊥ ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 sbfal.1 𝐴 ∈ V
2 sbcg ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ⊥ ↔ ⊥ ) )
3 1 2 ax-mp ( [ 𝐴 / 𝑥 ] ⊥ ↔ ⊥ )