Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbrbis.1 | |- ( [ y / x ] ph <-> ps ) | |
| Assertion | sbrbis | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbrbis.1 | |- ( [ y / x ] ph <-> ps ) | |
| 2 | sbbi | |- ( [ y / x ] ( ph <-> ch ) <-> ( [ y / x ] ph <-> [ y / x ] ch ) ) | |
| 3 | 1 | bibi1i | |- ( ( [ y / x ] ph <-> [ y / x ] ch ) <-> ( ps <-> [ y / x ] ch ) ) | 
| 4 | 2 3 | bitri | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) ) |