| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sb6 |  |-  ( [ y / x ] ( ph -> ps ) <-> A. x ( x = y -> ( ph -> ps ) ) ) | 
						
							| 2 |  | bi2.04 |  |-  ( ( ph -> ( x = y -> ps ) ) <-> ( x = y -> ( ph -> ps ) ) ) | 
						
							| 3 | 2 | albii |  |-  ( A. x ( ph -> ( x = y -> ps ) ) <-> A. x ( x = y -> ( ph -> ps ) ) ) | 
						
							| 4 |  | 19.21v |  |-  ( A. x ( ph -> ( x = y -> ps ) ) <-> ( ph -> A. x ( x = y -> ps ) ) ) | 
						
							| 5 | 1 3 4 | 3bitr2i |  |-  ( [ y / x ] ( ph -> ps ) <-> ( ph -> A. x ( x = y -> ps ) ) ) | 
						
							| 6 |  | sb6 |  |-  ( [ y / x ] ps <-> A. x ( x = y -> ps ) ) | 
						
							| 7 | 6 | imbi2i |  |-  ( ( ph -> [ y / x ] ps ) <-> ( ph -> A. x ( x = y -> ps ) ) ) | 
						
							| 8 | 5 7 | bitr4i |  |-  ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) |