| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sb6 | 
							⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  →  𝜓 )  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  ( 𝜑  →  𝜓 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bi2.04 | 
							⊢ ( ( 𝜑  →  ( 𝑥  =  𝑦  →  𝜓 ) )  ↔  ( 𝑥  =  𝑦  →  ( 𝜑  →  𝜓 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							albii | 
							⊢ ( ∀ 𝑥 ( 𝜑  →  ( 𝑥  =  𝑦  →  𝜓 ) )  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  ( 𝜑  →  𝜓 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							19.21v | 
							⊢ ( ∀ 𝑥 ( 𝜑  →  ( 𝑥  =  𝑦  →  𝜓 ) )  ↔  ( 𝜑  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜓 ) ) )  | 
						
						
							| 5 | 
							
								1 3 4
							 | 
							3bitr2i | 
							⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜓 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sb6 | 
							⊢ ( [ 𝑦  /  𝑥 ] 𝜓  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜓 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							imbi2i | 
							⊢ ( ( 𝜑  →  [ 𝑦  /  𝑥 ] 𝜓 )  ↔  ( 𝜑  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜓 ) ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							bitr4i | 
							⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  [ 𝑦  /  𝑥 ] 𝜓 ) )  |