Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
selvcllem1
Metamath Proof Explorer
Description: T is an associative algebra. For simplicity, I stands for
( I \ J ) and we have J e. W instead of J C_ I . TODO-SN:
In practice, this "simplification" makes the lemmas harder to use.
(Contributed by SN , 15-Dec-2023)
Ref
Expression
Hypotheses
selvcllem1.u
|- U = ( I mPoly R )
selvcllem1.t
|- T = ( J mPoly U )
selvcllem1.i
|- ( ph -> I e. V )
selvcllem1.j
|- ( ph -> J e. W )
selvcllem1.r
|- ( ph -> R e. CRing )
Assertion
selvcllem1
|- ( ph -> T e. AssAlg )
Proof
Step
Hyp
Ref
Expression
1
selvcllem1.u
|- U = ( I mPoly R )
2
selvcllem1.t
|- T = ( J mPoly U )
3
selvcllem1.i
|- ( ph -> I e. V )
4
selvcllem1.j
|- ( ph -> J e. W )
5
selvcllem1.r
|- ( ph -> R e. CRing )
6
1
mplcrng
|- ( ( I e. V /\ R e. CRing ) -> U e. CRing )
7
3 5 6
syl2anc
|- ( ph -> U e. CRing )
8
2
mplassa
|- ( ( J e. W /\ U e. CRing ) -> T e. AssAlg )
9
4 7 8
syl2anc
|- ( ph -> T e. AssAlg )