Metamath Proof Explorer


Theorem sepcsepo

Description: If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although J e. Top might be redundant here, it is listed for explicitness. J e. Top can be obtained from neircl , adantr , and rexlimiva . (Contributed by Zhi Wang, 8-Sep-2024)

Ref Expression
Hypotheses sepdisj.1
|- ( ph -> J e. Top )
sepcsepo.2
|- ( ph -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) )
Assertion sepcsepo
|- ( ph -> E. n e. J E. m e. J ( S C_ n /\ T C_ m /\ ( n i^i m ) = (/) ) )

Proof

Step Hyp Ref Expression
1 sepdisj.1
 |-  ( ph -> J e. Top )
2 sepcsepo.2
 |-  ( ph -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) )
3 simp3
 |-  ( ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) -> ( n i^i m ) = (/) )
4 3 reximi
 |-  ( E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) -> E. m e. ( ( nei ` J ) ` T ) ( n i^i m ) = (/) )
5 4 reximi
 |-  ( E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n i^i m ) = (/) )
6 2 5 syl
 |-  ( ph -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n i^i m ) = (/) )
7 1 sepnsepo
 |-  ( ph -> ( E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n i^i m ) = (/) <-> E. n e. J E. m e. J ( S C_ n /\ T C_ m /\ ( n i^i m ) = (/) ) ) )
8 6 7 mpbid
 |-  ( ph -> E. n e. J E. m e. J ( S C_ n /\ T C_ m /\ ( n i^i m ) = (/) ) )