Metamath Proof Explorer


Theorem neircl

Description: Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024)

Ref Expression
Assertion neircl
|- ( N e. ( ( nei ` J ) ` S ) -> J e. Top )

Proof

Step Hyp Ref Expression
1 elfvne0
 |-  ( N e. ( ( nei ` J ) ` S ) -> ( nei ` J ) =/= (/) )
2 n0
 |-  ( ( nei ` J ) =/= (/) <-> E. f f e. ( nei ` J ) )
3 2 biimpi
 |-  ( ( nei ` J ) =/= (/) -> E. f f e. ( nei ` J ) )
4 df-nei
 |-  nei = ( j e. Top |-> ( x e. ~P U. j |-> { y e. ~P U. j | E. g e. j ( x C_ g /\ g C_ y ) } ) )
5 4 mptrcl
 |-  ( f e. ( nei ` J ) -> J e. Top )
6 5 exlimiv
 |-  ( E. f f e. ( nei ` J ) -> J e. Top )
7 1 3 6 3syl
 |-  ( N e. ( ( nei ` J ) ` S ) -> J e. Top )