Description: Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | neircl | |- ( N e. ( ( nei ` J ) ` S ) -> J e. Top ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvne0 | |- ( N e. ( ( nei ` J ) ` S ) -> ( nei ` J ) =/= (/) ) |
|
2 | n0 | |- ( ( nei ` J ) =/= (/) <-> E. f f e. ( nei ` J ) ) |
|
3 | 2 | biimpi | |- ( ( nei ` J ) =/= (/) -> E. f f e. ( nei ` J ) ) |
4 | df-nei | |- nei = ( j e. Top |-> ( x e. ~P U. j |-> { y e. ~P U. j | E. g e. j ( x C_ g /\ g C_ y ) } ) ) |
|
5 | 4 | mptrcl | |- ( f e. ( nei ` J ) -> J e. Top ) |
6 | 5 | exlimiv | |- ( E. f f e. ( nei ` J ) -> J e. Top ) |
7 | 1 3 6 | 3syl | |- ( N e. ( ( nei ` J ) ` S ) -> J e. Top ) |