Description: Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neircl | ⊢ ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝐽 ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvne0 | ⊢ ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → ( nei ‘ 𝐽 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( nei ‘ 𝐽 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( nei ‘ 𝐽 ) ) | |
| 3 | 2 | biimpi | ⊢ ( ( nei ‘ 𝐽 ) ≠ ∅ → ∃ 𝑓 𝑓 ∈ ( nei ‘ 𝐽 ) ) |
| 4 | df-nei | ⊢ nei = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∈ 𝒫 ∪ 𝑗 ∣ ∃ 𝑔 ∈ 𝑗 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) } ) ) | |
| 5 | 4 | mptrcl | ⊢ ( 𝑓 ∈ ( nei ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( nei ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 7 | 1 3 6 | 3syl | ⊢ ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝐽 ∈ Top ) |