Description: Lemma factoring out common proof steps of opnneil and opnneirv . (Contributed by Zhi Wang, 31-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opnneilem.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
| Assertion | opnneilem | |- ( ph -> ( E. x e. J ( S C_ x /\ ps ) <-> E. y e. J ( S C_ y /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opnneilem.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
| 2 | sseq2 | |- ( x = y -> ( S C_ x <-> S C_ y ) ) |
|
| 3 | 2 | adantl | |- ( ( ph /\ x = y ) -> ( S C_ x <-> S C_ y ) ) |
| 4 | 3 1 | anbi12d | |- ( ( ph /\ x = y ) -> ( ( S C_ x /\ ps ) <-> ( S C_ y /\ ch ) ) ) |
| 5 | 4 | cbvrexdva | |- ( ph -> ( E. x e. J ( S C_ x /\ ps ) <-> E. y e. J ( S C_ y /\ ch ) ) ) |