| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sepfsepc.1 |
|- ( ph -> E. f e. ( J Cn II ) ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) |
| 2 |
|
simpl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> f e. ( J Cn II ) ) |
| 3 |
|
0re |
|- 0 e. RR |
| 4 |
|
1re |
|- 1 e. RR |
| 5 |
|
0le0 |
|- 0 <_ 0 |
| 6 |
|
3re |
|- 3 e. RR |
| 7 |
|
3ne0 |
|- 3 =/= 0 |
| 8 |
6 7
|
rereccli |
|- ( 1 / 3 ) e. RR |
| 9 |
|
1lt3 |
|- 1 < 3 |
| 10 |
|
recgt1i |
|- ( ( 3 e. RR /\ 1 < 3 ) -> ( 0 < ( 1 / 3 ) /\ ( 1 / 3 ) < 1 ) ) |
| 11 |
6 9 10
|
mp2an |
|- ( 0 < ( 1 / 3 ) /\ ( 1 / 3 ) < 1 ) |
| 12 |
11
|
simpri |
|- ( 1 / 3 ) < 1 |
| 13 |
8 4 12
|
ltleii |
|- ( 1 / 3 ) <_ 1 |
| 14 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ 0 /\ ( 1 / 3 ) <_ 1 ) ) -> ( 0 [,] ( 1 / 3 ) ) C_ ( 0 [,] 1 ) ) |
| 15 |
3 4 5 13 14
|
mp4an |
|- ( 0 [,] ( 1 / 3 ) ) C_ ( 0 [,] 1 ) |
| 16 |
|
i0oii |
|- ( ( 1 / 3 ) <_ 1 -> ( 0 [,) ( 1 / 3 ) ) e. II ) |
| 17 |
13 16
|
ax-mp |
|- ( 0 [,) ( 1 / 3 ) ) e. II |
| 18 |
11
|
simpli |
|- 0 < ( 1 / 3 ) |
| 19 |
8
|
rexri |
|- ( 1 / 3 ) e. RR* |
| 20 |
|
elico2 |
|- ( ( 0 e. RR /\ ( 1 / 3 ) e. RR* ) -> ( 0 e. ( 0 [,) ( 1 / 3 ) ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 < ( 1 / 3 ) ) ) ) |
| 21 |
3 19 20
|
mp2an |
|- ( 0 e. ( 0 [,) ( 1 / 3 ) ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 < ( 1 / 3 ) ) ) |
| 22 |
21
|
biimpri |
|- ( ( 0 e. RR /\ 0 <_ 0 /\ 0 < ( 1 / 3 ) ) -> 0 e. ( 0 [,) ( 1 / 3 ) ) ) |
| 23 |
22
|
snssd |
|- ( ( 0 e. RR /\ 0 <_ 0 /\ 0 < ( 1 / 3 ) ) -> { 0 } C_ ( 0 [,) ( 1 / 3 ) ) ) |
| 24 |
3 5 18 23
|
mp3an |
|- { 0 } C_ ( 0 [,) ( 1 / 3 ) ) |
| 25 |
|
icossicc |
|- ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) |
| 26 |
24 25
|
pm3.2i |
|- ( { 0 } C_ ( 0 [,) ( 1 / 3 ) ) /\ ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) ) |
| 27 |
|
sseq2 |
|- ( g = ( 0 [,) ( 1 / 3 ) ) -> ( { 0 } C_ g <-> { 0 } C_ ( 0 [,) ( 1 / 3 ) ) ) ) |
| 28 |
|
sseq1 |
|- ( g = ( 0 [,) ( 1 / 3 ) ) -> ( g C_ ( 0 [,] ( 1 / 3 ) ) <-> ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) ) ) |
| 29 |
27 28
|
anbi12d |
|- ( g = ( 0 [,) ( 1 / 3 ) ) -> ( ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) <-> ( { 0 } C_ ( 0 [,) ( 1 / 3 ) ) /\ ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) ) ) ) |
| 30 |
29
|
rspcev |
|- ( ( ( 0 [,) ( 1 / 3 ) ) e. II /\ ( { 0 } C_ ( 0 [,) ( 1 / 3 ) ) /\ ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) ) ) -> E. g e. II ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) ) |
| 31 |
17 26 30
|
mp2an |
|- E. g e. II ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) |
| 32 |
|
iitop |
|- II e. Top |
| 33 |
24 25
|
sstri |
|- { 0 } C_ ( 0 [,] ( 1 / 3 ) ) |
| 34 |
33 15
|
sstri |
|- { 0 } C_ ( 0 [,] 1 ) |
| 35 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 36 |
35
|
isnei |
|- ( ( II e. Top /\ { 0 } C_ ( 0 [,] 1 ) ) -> ( ( 0 [,] ( 1 / 3 ) ) e. ( ( nei ` II ) ` { 0 } ) <-> ( ( 0 [,] ( 1 / 3 ) ) C_ ( 0 [,] 1 ) /\ E. g e. II ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) ) ) ) |
| 37 |
32 34 36
|
mp2an |
|- ( ( 0 [,] ( 1 / 3 ) ) e. ( ( nei ` II ) ` { 0 } ) <-> ( ( 0 [,] ( 1 / 3 ) ) C_ ( 0 [,] 1 ) /\ E. g e. II ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) ) ) |
| 38 |
15 31 37
|
mpbir2an |
|- ( 0 [,] ( 1 / 3 ) ) e. ( ( nei ` II ) ` { 0 } ) |
| 39 |
38
|
a1i |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( 0 [,] ( 1 / 3 ) ) e. ( ( nei ` II ) ` { 0 } ) ) |
| 40 |
|
simprl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> S C_ ( `' f " { 0 } ) ) |
| 41 |
2 39 40
|
cnneiima |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( ( nei ` J ) ` S ) ) |
| 42 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
| 43 |
|
1le1 |
|- 1 <_ 1 |
| 44 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ ( 1 / 2 ) /\ 1 <_ 1 ) ) -> ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) ) |
| 45 |
3 4 42 43 44
|
mp4an |
|- ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) |
| 46 |
|
io1ii |
|- ( 0 <_ ( 1 / 2 ) -> ( ( 1 / 2 ) (,] 1 ) e. II ) |
| 47 |
42 46
|
ax-mp |
|- ( ( 1 / 2 ) (,] 1 ) e. II |
| 48 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 49 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 50 |
49
|
rexri |
|- ( 1 / 2 ) e. RR* |
| 51 |
|
elioc2 |
|- ( ( ( 1 / 2 ) e. RR* /\ 1 e. RR ) -> ( 1 e. ( ( 1 / 2 ) (,] 1 ) <-> ( 1 e. RR /\ ( 1 / 2 ) < 1 /\ 1 <_ 1 ) ) ) |
| 52 |
50 4 51
|
mp2an |
|- ( 1 e. ( ( 1 / 2 ) (,] 1 ) <-> ( 1 e. RR /\ ( 1 / 2 ) < 1 /\ 1 <_ 1 ) ) |
| 53 |
52
|
biimpri |
|- ( ( 1 e. RR /\ ( 1 / 2 ) < 1 /\ 1 <_ 1 ) -> 1 e. ( ( 1 / 2 ) (,] 1 ) ) |
| 54 |
53
|
snssd |
|- ( ( 1 e. RR /\ ( 1 / 2 ) < 1 /\ 1 <_ 1 ) -> { 1 } C_ ( ( 1 / 2 ) (,] 1 ) ) |
| 55 |
4 48 43 54
|
mp3an |
|- { 1 } C_ ( ( 1 / 2 ) (,] 1 ) |
| 56 |
|
iocssicc |
|- ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) |
| 57 |
55 56
|
pm3.2i |
|- ( { 1 } C_ ( ( 1 / 2 ) (,] 1 ) /\ ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) ) |
| 58 |
|
sseq2 |
|- ( h = ( ( 1 / 2 ) (,] 1 ) -> ( { 1 } C_ h <-> { 1 } C_ ( ( 1 / 2 ) (,] 1 ) ) ) |
| 59 |
|
sseq1 |
|- ( h = ( ( 1 / 2 ) (,] 1 ) -> ( h C_ ( ( 1 / 2 ) [,] 1 ) <-> ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 60 |
58 59
|
anbi12d |
|- ( h = ( ( 1 / 2 ) (,] 1 ) -> ( ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) <-> ( { 1 } C_ ( ( 1 / 2 ) (,] 1 ) /\ ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 61 |
60
|
rspcev |
|- ( ( ( ( 1 / 2 ) (,] 1 ) e. II /\ ( { 1 } C_ ( ( 1 / 2 ) (,] 1 ) /\ ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) ) ) -> E. h e. II ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 62 |
47 57 61
|
mp2an |
|- E. h e. II ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) |
| 63 |
55 56
|
sstri |
|- { 1 } C_ ( ( 1 / 2 ) [,] 1 ) |
| 64 |
63 45
|
sstri |
|- { 1 } C_ ( 0 [,] 1 ) |
| 65 |
35
|
isnei |
|- ( ( II e. Top /\ { 1 } C_ ( 0 [,] 1 ) ) -> ( ( ( 1 / 2 ) [,] 1 ) e. ( ( nei ` II ) ` { 1 } ) <-> ( ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) /\ E. h e. II ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) ) ) ) |
| 66 |
32 64 65
|
mp2an |
|- ( ( ( 1 / 2 ) [,] 1 ) e. ( ( nei ` II ) ` { 1 } ) <-> ( ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) /\ E. h e. II ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 67 |
45 62 66
|
mpbir2an |
|- ( ( 1 / 2 ) [,] 1 ) e. ( ( nei ` II ) ` { 1 } ) |
| 68 |
67
|
a1i |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( ( 1 / 2 ) [,] 1 ) e. ( ( nei ` II ) ` { 1 } ) ) |
| 69 |
|
simprr |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> T C_ ( `' f " { 1 } ) ) |
| 70 |
2 68 69
|
cnneiima |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( ( nei ` J ) ` T ) ) |
| 71 |
|
icccldii |
|- ( ( 0 <_ 0 /\ ( 1 / 3 ) <_ 1 ) -> ( 0 [,] ( 1 / 3 ) ) e. ( Clsd ` II ) ) |
| 72 |
5 13 71
|
mp2an |
|- ( 0 [,] ( 1 / 3 ) ) e. ( Clsd ` II ) |
| 73 |
|
cnclima |
|- ( ( f e. ( J Cn II ) /\ ( 0 [,] ( 1 / 3 ) ) e. ( Clsd ` II ) ) -> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) ) |
| 74 |
2 72 73
|
sylancl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) ) |
| 75 |
|
icccldii |
|- ( ( 0 <_ ( 1 / 2 ) /\ 1 <_ 1 ) -> ( ( 1 / 2 ) [,] 1 ) e. ( Clsd ` II ) ) |
| 76 |
42 43 75
|
mp2an |
|- ( ( 1 / 2 ) [,] 1 ) e. ( Clsd ` II ) |
| 77 |
|
cnclima |
|- ( ( f e. ( J Cn II ) /\ ( ( 1 / 2 ) [,] 1 ) e. ( Clsd ` II ) ) -> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) ) |
| 78 |
2 76 77
|
sylancl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) ) |
| 79 |
|
eqid |
|- U. J = U. J |
| 80 |
79 35
|
cnf |
|- ( f e. ( J Cn II ) -> f : U. J --> ( 0 [,] 1 ) ) |
| 81 |
80
|
ffund |
|- ( f e. ( J Cn II ) -> Fun f ) |
| 82 |
2 81
|
syl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> Fun f ) |
| 83 |
|
0xr |
|- 0 e. RR* |
| 84 |
|
1xr |
|- 1 e. RR* |
| 85 |
|
2lt3 |
|- 2 < 3 |
| 86 |
|
2re |
|- 2 e. RR |
| 87 |
|
2pos |
|- 0 < 2 |
| 88 |
|
3pos |
|- 0 < 3 |
| 89 |
86 6 87 88
|
ltrecii |
|- ( 2 < 3 <-> ( 1 / 3 ) < ( 1 / 2 ) ) |
| 90 |
85 89
|
mpbi |
|- ( 1 / 3 ) < ( 1 / 2 ) |
| 91 |
|
iccdisj2 |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ ( 1 / 3 ) < ( 1 / 2 ) ) -> ( ( 0 [,] ( 1 / 3 ) ) i^i ( ( 1 / 2 ) [,] 1 ) ) = (/) ) |
| 92 |
83 84 90 91
|
mp3an |
|- ( ( 0 [,] ( 1 / 3 ) ) i^i ( ( 1 / 2 ) [,] 1 ) ) = (/) |
| 93 |
92
|
a1i |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( ( 0 [,] ( 1 / 3 ) ) i^i ( ( 1 / 2 ) [,] 1 ) ) = (/) ) |
| 94 |
|
ssidd |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) C_ ( `' f " ( 0 [,] ( 1 / 3 ) ) ) ) |
| 95 |
|
ssidd |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) C_ ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) |
| 96 |
82 93 94 95
|
predisj |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) = (/) ) |
| 97 |
|
eleq1 |
|- ( n = ( `' f " ( 0 [,] ( 1 / 3 ) ) ) -> ( n e. ( Clsd ` J ) <-> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) ) ) |
| 98 |
|
ineq1 |
|- ( n = ( `' f " ( 0 [,] ( 1 / 3 ) ) ) -> ( n i^i m ) = ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) ) |
| 99 |
98
|
eqeq1d |
|- ( n = ( `' f " ( 0 [,] ( 1 / 3 ) ) ) -> ( ( n i^i m ) = (/) <-> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = (/) ) ) |
| 100 |
97 99
|
3anbi13d |
|- ( n = ( `' f " ( 0 [,] ( 1 / 3 ) ) ) -> ( ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) <-> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = (/) ) ) ) |
| 101 |
|
eleq1 |
|- ( m = ( `' f " ( ( 1 / 2 ) [,] 1 ) ) -> ( m e. ( Clsd ` J ) <-> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) ) ) |
| 102 |
|
ineq2 |
|- ( m = ( `' f " ( ( 1 / 2 ) [,] 1 ) ) -> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 103 |
102
|
eqeq1d |
|- ( m = ( `' f " ( ( 1 / 2 ) [,] 1 ) ) -> ( ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = (/) <-> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) = (/) ) ) |
| 104 |
101 103
|
3anbi23d |
|- ( m = ( `' f " ( ( 1 / 2 ) [,] 1 ) ) -> ( ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = (/) ) <-> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) /\ ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) = (/) ) ) ) |
| 105 |
100 104
|
rspc2ev |
|- ( ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( ( nei ` J ) ` S ) /\ ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( ( nei ` J ) ` T ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) /\ ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) = (/) ) ) -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) ) |
| 106 |
41 70 74 78 96 105
|
syl113anc |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) ) |
| 107 |
106
|
rexlimiva |
|- ( E. f e. ( J Cn II ) ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) ) |
| 108 |
1 107
|
syl |
|- ( ph -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) ) |