Step |
Hyp |
Ref |
Expression |
1 |
|
sepfsepc.1 |
|- ( ph -> E. f e. ( J Cn II ) ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) |
2 |
|
simpl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> f e. ( J Cn II ) ) |
3 |
|
0re |
|- 0 e. RR |
4 |
|
1re |
|- 1 e. RR |
5 |
|
0le0 |
|- 0 <_ 0 |
6 |
|
3re |
|- 3 e. RR |
7 |
|
3ne0 |
|- 3 =/= 0 |
8 |
6 7
|
rereccli |
|- ( 1 / 3 ) e. RR |
9 |
|
1lt3 |
|- 1 < 3 |
10 |
|
recgt1i |
|- ( ( 3 e. RR /\ 1 < 3 ) -> ( 0 < ( 1 / 3 ) /\ ( 1 / 3 ) < 1 ) ) |
11 |
6 9 10
|
mp2an |
|- ( 0 < ( 1 / 3 ) /\ ( 1 / 3 ) < 1 ) |
12 |
11
|
simpri |
|- ( 1 / 3 ) < 1 |
13 |
8 4 12
|
ltleii |
|- ( 1 / 3 ) <_ 1 |
14 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ 0 /\ ( 1 / 3 ) <_ 1 ) ) -> ( 0 [,] ( 1 / 3 ) ) C_ ( 0 [,] 1 ) ) |
15 |
3 4 5 13 14
|
mp4an |
|- ( 0 [,] ( 1 / 3 ) ) C_ ( 0 [,] 1 ) |
16 |
|
i0oii |
|- ( ( 1 / 3 ) <_ 1 -> ( 0 [,) ( 1 / 3 ) ) e. II ) |
17 |
13 16
|
ax-mp |
|- ( 0 [,) ( 1 / 3 ) ) e. II |
18 |
11
|
simpli |
|- 0 < ( 1 / 3 ) |
19 |
8
|
rexri |
|- ( 1 / 3 ) e. RR* |
20 |
|
elico2 |
|- ( ( 0 e. RR /\ ( 1 / 3 ) e. RR* ) -> ( 0 e. ( 0 [,) ( 1 / 3 ) ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 < ( 1 / 3 ) ) ) ) |
21 |
3 19 20
|
mp2an |
|- ( 0 e. ( 0 [,) ( 1 / 3 ) ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 < ( 1 / 3 ) ) ) |
22 |
21
|
biimpri |
|- ( ( 0 e. RR /\ 0 <_ 0 /\ 0 < ( 1 / 3 ) ) -> 0 e. ( 0 [,) ( 1 / 3 ) ) ) |
23 |
22
|
snssd |
|- ( ( 0 e. RR /\ 0 <_ 0 /\ 0 < ( 1 / 3 ) ) -> { 0 } C_ ( 0 [,) ( 1 / 3 ) ) ) |
24 |
3 5 18 23
|
mp3an |
|- { 0 } C_ ( 0 [,) ( 1 / 3 ) ) |
25 |
|
icossicc |
|- ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) |
26 |
24 25
|
pm3.2i |
|- ( { 0 } C_ ( 0 [,) ( 1 / 3 ) ) /\ ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) ) |
27 |
|
sseq2 |
|- ( g = ( 0 [,) ( 1 / 3 ) ) -> ( { 0 } C_ g <-> { 0 } C_ ( 0 [,) ( 1 / 3 ) ) ) ) |
28 |
|
sseq1 |
|- ( g = ( 0 [,) ( 1 / 3 ) ) -> ( g C_ ( 0 [,] ( 1 / 3 ) ) <-> ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) ) ) |
29 |
27 28
|
anbi12d |
|- ( g = ( 0 [,) ( 1 / 3 ) ) -> ( ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) <-> ( { 0 } C_ ( 0 [,) ( 1 / 3 ) ) /\ ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) ) ) ) |
30 |
29
|
rspcev |
|- ( ( ( 0 [,) ( 1 / 3 ) ) e. II /\ ( { 0 } C_ ( 0 [,) ( 1 / 3 ) ) /\ ( 0 [,) ( 1 / 3 ) ) C_ ( 0 [,] ( 1 / 3 ) ) ) ) -> E. g e. II ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) ) |
31 |
17 26 30
|
mp2an |
|- E. g e. II ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) |
32 |
|
iitop |
|- II e. Top |
33 |
24 25
|
sstri |
|- { 0 } C_ ( 0 [,] ( 1 / 3 ) ) |
34 |
33 15
|
sstri |
|- { 0 } C_ ( 0 [,] 1 ) |
35 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
36 |
35
|
isnei |
|- ( ( II e. Top /\ { 0 } C_ ( 0 [,] 1 ) ) -> ( ( 0 [,] ( 1 / 3 ) ) e. ( ( nei ` II ) ` { 0 } ) <-> ( ( 0 [,] ( 1 / 3 ) ) C_ ( 0 [,] 1 ) /\ E. g e. II ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) ) ) ) |
37 |
32 34 36
|
mp2an |
|- ( ( 0 [,] ( 1 / 3 ) ) e. ( ( nei ` II ) ` { 0 } ) <-> ( ( 0 [,] ( 1 / 3 ) ) C_ ( 0 [,] 1 ) /\ E. g e. II ( { 0 } C_ g /\ g C_ ( 0 [,] ( 1 / 3 ) ) ) ) ) |
38 |
15 31 37
|
mpbir2an |
|- ( 0 [,] ( 1 / 3 ) ) e. ( ( nei ` II ) ` { 0 } ) |
39 |
38
|
a1i |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( 0 [,] ( 1 / 3 ) ) e. ( ( nei ` II ) ` { 0 } ) ) |
40 |
|
simprl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> S C_ ( `' f " { 0 } ) ) |
41 |
2 39 40
|
cnneiima |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( ( nei ` J ) ` S ) ) |
42 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
43 |
|
1le1 |
|- 1 <_ 1 |
44 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ ( 1 / 2 ) /\ 1 <_ 1 ) ) -> ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) ) |
45 |
3 4 42 43 44
|
mp4an |
|- ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) |
46 |
|
io1ii |
|- ( 0 <_ ( 1 / 2 ) -> ( ( 1 / 2 ) (,] 1 ) e. II ) |
47 |
42 46
|
ax-mp |
|- ( ( 1 / 2 ) (,] 1 ) e. II |
48 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
49 |
|
halfre |
|- ( 1 / 2 ) e. RR |
50 |
49
|
rexri |
|- ( 1 / 2 ) e. RR* |
51 |
|
elioc2 |
|- ( ( ( 1 / 2 ) e. RR* /\ 1 e. RR ) -> ( 1 e. ( ( 1 / 2 ) (,] 1 ) <-> ( 1 e. RR /\ ( 1 / 2 ) < 1 /\ 1 <_ 1 ) ) ) |
52 |
50 4 51
|
mp2an |
|- ( 1 e. ( ( 1 / 2 ) (,] 1 ) <-> ( 1 e. RR /\ ( 1 / 2 ) < 1 /\ 1 <_ 1 ) ) |
53 |
52
|
biimpri |
|- ( ( 1 e. RR /\ ( 1 / 2 ) < 1 /\ 1 <_ 1 ) -> 1 e. ( ( 1 / 2 ) (,] 1 ) ) |
54 |
53
|
snssd |
|- ( ( 1 e. RR /\ ( 1 / 2 ) < 1 /\ 1 <_ 1 ) -> { 1 } C_ ( ( 1 / 2 ) (,] 1 ) ) |
55 |
4 48 43 54
|
mp3an |
|- { 1 } C_ ( ( 1 / 2 ) (,] 1 ) |
56 |
|
iocssicc |
|- ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) |
57 |
55 56
|
pm3.2i |
|- ( { 1 } C_ ( ( 1 / 2 ) (,] 1 ) /\ ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) ) |
58 |
|
sseq2 |
|- ( h = ( ( 1 / 2 ) (,] 1 ) -> ( { 1 } C_ h <-> { 1 } C_ ( ( 1 / 2 ) (,] 1 ) ) ) |
59 |
|
sseq1 |
|- ( h = ( ( 1 / 2 ) (,] 1 ) -> ( h C_ ( ( 1 / 2 ) [,] 1 ) <-> ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) ) ) |
60 |
58 59
|
anbi12d |
|- ( h = ( ( 1 / 2 ) (,] 1 ) -> ( ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) <-> ( { 1 } C_ ( ( 1 / 2 ) (,] 1 ) /\ ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) ) ) ) |
61 |
60
|
rspcev |
|- ( ( ( ( 1 / 2 ) (,] 1 ) e. II /\ ( { 1 } C_ ( ( 1 / 2 ) (,] 1 ) /\ ( ( 1 / 2 ) (,] 1 ) C_ ( ( 1 / 2 ) [,] 1 ) ) ) -> E. h e. II ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) ) |
62 |
47 57 61
|
mp2an |
|- E. h e. II ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) |
63 |
55 56
|
sstri |
|- { 1 } C_ ( ( 1 / 2 ) [,] 1 ) |
64 |
63 45
|
sstri |
|- { 1 } C_ ( 0 [,] 1 ) |
65 |
35
|
isnei |
|- ( ( II e. Top /\ { 1 } C_ ( 0 [,] 1 ) ) -> ( ( ( 1 / 2 ) [,] 1 ) e. ( ( nei ` II ) ` { 1 } ) <-> ( ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) /\ E. h e. II ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) ) ) ) |
66 |
32 64 65
|
mp2an |
|- ( ( ( 1 / 2 ) [,] 1 ) e. ( ( nei ` II ) ` { 1 } ) <-> ( ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) /\ E. h e. II ( { 1 } C_ h /\ h C_ ( ( 1 / 2 ) [,] 1 ) ) ) ) |
67 |
45 62 66
|
mpbir2an |
|- ( ( 1 / 2 ) [,] 1 ) e. ( ( nei ` II ) ` { 1 } ) |
68 |
67
|
a1i |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( ( 1 / 2 ) [,] 1 ) e. ( ( nei ` II ) ` { 1 } ) ) |
69 |
|
simprr |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> T C_ ( `' f " { 1 } ) ) |
70 |
2 68 69
|
cnneiima |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( ( nei ` J ) ` T ) ) |
71 |
|
icccldii |
|- ( ( 0 <_ 0 /\ ( 1 / 3 ) <_ 1 ) -> ( 0 [,] ( 1 / 3 ) ) e. ( Clsd ` II ) ) |
72 |
5 13 71
|
mp2an |
|- ( 0 [,] ( 1 / 3 ) ) e. ( Clsd ` II ) |
73 |
|
cnclima |
|- ( ( f e. ( J Cn II ) /\ ( 0 [,] ( 1 / 3 ) ) e. ( Clsd ` II ) ) -> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) ) |
74 |
2 72 73
|
sylancl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) ) |
75 |
|
icccldii |
|- ( ( 0 <_ ( 1 / 2 ) /\ 1 <_ 1 ) -> ( ( 1 / 2 ) [,] 1 ) e. ( Clsd ` II ) ) |
76 |
42 43 75
|
mp2an |
|- ( ( 1 / 2 ) [,] 1 ) e. ( Clsd ` II ) |
77 |
|
cnclima |
|- ( ( f e. ( J Cn II ) /\ ( ( 1 / 2 ) [,] 1 ) e. ( Clsd ` II ) ) -> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) ) |
78 |
2 76 77
|
sylancl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) ) |
79 |
|
eqid |
|- U. J = U. J |
80 |
79 35
|
cnf |
|- ( f e. ( J Cn II ) -> f : U. J --> ( 0 [,] 1 ) ) |
81 |
80
|
ffund |
|- ( f e. ( J Cn II ) -> Fun f ) |
82 |
2 81
|
syl |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> Fun f ) |
83 |
|
0xr |
|- 0 e. RR* |
84 |
|
1xr |
|- 1 e. RR* |
85 |
|
2lt3 |
|- 2 < 3 |
86 |
|
2re |
|- 2 e. RR |
87 |
|
2pos |
|- 0 < 2 |
88 |
|
3pos |
|- 0 < 3 |
89 |
86 6 87 88
|
ltrecii |
|- ( 2 < 3 <-> ( 1 / 3 ) < ( 1 / 2 ) ) |
90 |
85 89
|
mpbi |
|- ( 1 / 3 ) < ( 1 / 2 ) |
91 |
|
iccdisj2 |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ ( 1 / 3 ) < ( 1 / 2 ) ) -> ( ( 0 [,] ( 1 / 3 ) ) i^i ( ( 1 / 2 ) [,] 1 ) ) = (/) ) |
92 |
83 84 90 91
|
mp3an |
|- ( ( 0 [,] ( 1 / 3 ) ) i^i ( ( 1 / 2 ) [,] 1 ) ) = (/) |
93 |
92
|
a1i |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( ( 0 [,] ( 1 / 3 ) ) i^i ( ( 1 / 2 ) [,] 1 ) ) = (/) ) |
94 |
|
ssidd |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) C_ ( `' f " ( 0 [,] ( 1 / 3 ) ) ) ) |
95 |
|
ssidd |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) C_ ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) |
96 |
82 93 94 95
|
predisj |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) = (/) ) |
97 |
|
eleq1 |
|- ( n = ( `' f " ( 0 [,] ( 1 / 3 ) ) ) -> ( n e. ( Clsd ` J ) <-> ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) ) ) |
98 |
|
ineq1 |
|- ( n = ( `' f " ( 0 [,] ( 1 / 3 ) ) ) -> ( n i^i m ) = ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) ) |
99 |
98
|
eqeq1d |
|- ( n = ( `' f " ( 0 [,] ( 1 / 3 ) ) ) -> ( ( n i^i m ) = (/) <-> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = (/) ) ) |
100 |
97 99
|
3anbi13d |
|- ( n = ( `' f " ( 0 [,] ( 1 / 3 ) ) ) -> ( ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) <-> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = (/) ) ) ) |
101 |
|
eleq1 |
|- ( m = ( `' f " ( ( 1 / 2 ) [,] 1 ) ) -> ( m e. ( Clsd ` J ) <-> ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) ) ) |
102 |
|
ineq2 |
|- ( m = ( `' f " ( ( 1 / 2 ) [,] 1 ) ) -> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) ) |
103 |
102
|
eqeq1d |
|- ( m = ( `' f " ( ( 1 / 2 ) [,] 1 ) ) -> ( ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = (/) <-> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) = (/) ) ) |
104 |
101 103
|
3anbi23d |
|- ( m = ( `' f " ( ( 1 / 2 ) [,] 1 ) ) -> ( ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i m ) = (/) ) <-> ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) /\ ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) = (/) ) ) ) |
105 |
100 104
|
rspc2ev |
|- ( ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( ( nei ` J ) ` S ) /\ ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( ( nei ` J ) ` T ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) e. ( Clsd ` J ) /\ ( `' f " ( ( 1 / 2 ) [,] 1 ) ) e. ( Clsd ` J ) /\ ( ( `' f " ( 0 [,] ( 1 / 3 ) ) ) i^i ( `' f " ( ( 1 / 2 ) [,] 1 ) ) ) = (/) ) ) -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) ) |
106 |
41 70 74 78 96 105
|
syl113anc |
|- ( ( f e. ( J Cn II ) /\ ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) ) -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) ) |
107 |
106
|
rexlimiva |
|- ( E. f e. ( J Cn II ) ( S C_ ( `' f " { 0 } ) /\ T C_ ( `' f " { 1 } ) ) -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) ) |
108 |
1 107
|
syl |
|- ( ph -> E. n e. ( ( nei ` J ) ` S ) E. m e. ( ( nei ` J ) ` T ) ( n e. ( Clsd ` J ) /\ m e. ( Clsd ` J ) /\ ( n i^i m ) = (/) ) ) |