Step |
Hyp |
Ref |
Expression |
1 |
|
cnneiima.1 |
|- ( ph -> F e. ( J Cn K ) ) |
2 |
|
cnneiima.2 |
|- ( ph -> N e. ( ( nei ` K ) ` T ) ) |
3 |
|
cnneiima.3 |
|- ( ph -> S C_ ( `' F " T ) ) |
4 |
|
eqid |
|- U. J = U. J |
5 |
|
eqid |
|- U. K = U. K |
6 |
4 5
|
cnf |
|- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
7 |
1 6
|
syl |
|- ( ph -> F : U. J --> U. K ) |
8 |
7
|
ffund |
|- ( ph -> Fun F ) |
9 |
|
cntop2 |
|- ( F e. ( J Cn K ) -> K e. Top ) |
10 |
1 9
|
syl |
|- ( ph -> K e. Top ) |
11 |
5
|
neiss2 |
|- ( ( K e. Top /\ N e. ( ( nei ` K ) ` T ) ) -> T C_ U. K ) |
12 |
10 2 11
|
syl2anc |
|- ( ph -> T C_ U. K ) |
13 |
5
|
neii1 |
|- ( ( K e. Top /\ N e. ( ( nei ` K ) ` T ) ) -> N C_ U. K ) |
14 |
10 2 13
|
syl2anc |
|- ( ph -> N C_ U. K ) |
15 |
5
|
neiint |
|- ( ( K e. Top /\ T C_ U. K /\ N C_ U. K ) -> ( N e. ( ( nei ` K ) ` T ) <-> T C_ ( ( int ` K ) ` N ) ) ) |
16 |
10 12 14 15
|
syl3anc |
|- ( ph -> ( N e. ( ( nei ` K ) ` T ) <-> T C_ ( ( int ` K ) ` N ) ) ) |
17 |
2 16
|
mpbid |
|- ( ph -> T C_ ( ( int ` K ) ` N ) ) |
18 |
|
sspreima |
|- ( ( Fun F /\ T C_ ( ( int ` K ) ` N ) ) -> ( `' F " T ) C_ ( `' F " ( ( int ` K ) ` N ) ) ) |
19 |
8 17 18
|
syl2anc |
|- ( ph -> ( `' F " T ) C_ ( `' F " ( ( int ` K ) ` N ) ) ) |
20 |
3 19
|
sstrd |
|- ( ph -> S C_ ( `' F " ( ( int ` K ) ` N ) ) ) |
21 |
5
|
cnntri |
|- ( ( F e. ( J Cn K ) /\ N C_ U. K ) -> ( `' F " ( ( int ` K ) ` N ) ) C_ ( ( int ` J ) ` ( `' F " N ) ) ) |
22 |
1 14 21
|
syl2anc |
|- ( ph -> ( `' F " ( ( int ` K ) ` N ) ) C_ ( ( int ` J ) ` ( `' F " N ) ) ) |
23 |
20 22
|
sstrd |
|- ( ph -> S C_ ( ( int ` J ) ` ( `' F " N ) ) ) |
24 |
|
cntop1 |
|- ( F e. ( J Cn K ) -> J e. Top ) |
25 |
1 24
|
syl |
|- ( ph -> J e. Top ) |
26 |
|
sspreima |
|- ( ( Fun F /\ T C_ U. K ) -> ( `' F " T ) C_ ( `' F " U. K ) ) |
27 |
8 12 26
|
syl2anc |
|- ( ph -> ( `' F " T ) C_ ( `' F " U. K ) ) |
28 |
|
fimacnv |
|- ( F : U. J --> U. K -> ( `' F " U. K ) = U. J ) |
29 |
7 28
|
syl |
|- ( ph -> ( `' F " U. K ) = U. J ) |
30 |
27 29
|
sseqtrd |
|- ( ph -> ( `' F " T ) C_ U. J ) |
31 |
3 30
|
sstrd |
|- ( ph -> S C_ U. J ) |
32 |
|
sspreima |
|- ( ( Fun F /\ N C_ U. K ) -> ( `' F " N ) C_ ( `' F " U. K ) ) |
33 |
8 14 32
|
syl2anc |
|- ( ph -> ( `' F " N ) C_ ( `' F " U. K ) ) |
34 |
33 29
|
sseqtrd |
|- ( ph -> ( `' F " N ) C_ U. J ) |
35 |
4
|
neiint |
|- ( ( J e. Top /\ S C_ U. J /\ ( `' F " N ) C_ U. J ) -> ( ( `' F " N ) e. ( ( nei ` J ) ` S ) <-> S C_ ( ( int ` J ) ` ( `' F " N ) ) ) ) |
36 |
25 31 34 35
|
syl3anc |
|- ( ph -> ( ( `' F " N ) e. ( ( nei ` J ) ` S ) <-> S C_ ( ( int ` J ) ` ( `' F " N ) ) ) ) |
37 |
23 36
|
mpbird |
|- ( ph -> ( `' F " N ) e. ( ( nei ` J ) ` S ) ) |