| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnneiima.1 |
|- ( ph -> F e. ( J Cn K ) ) |
| 2 |
|
cnneiima.2 |
|- ( ph -> N e. ( ( nei ` K ) ` T ) ) |
| 3 |
|
cnneiima.3 |
|- ( ph -> S C_ ( `' F " T ) ) |
| 4 |
|
eqid |
|- U. J = U. J |
| 5 |
|
eqid |
|- U. K = U. K |
| 6 |
4 5
|
cnf |
|- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
| 7 |
1 6
|
syl |
|- ( ph -> F : U. J --> U. K ) |
| 8 |
7
|
ffund |
|- ( ph -> Fun F ) |
| 9 |
|
cntop2 |
|- ( F e. ( J Cn K ) -> K e. Top ) |
| 10 |
1 9
|
syl |
|- ( ph -> K e. Top ) |
| 11 |
5
|
neiss2 |
|- ( ( K e. Top /\ N e. ( ( nei ` K ) ` T ) ) -> T C_ U. K ) |
| 12 |
10 2 11
|
syl2anc |
|- ( ph -> T C_ U. K ) |
| 13 |
5
|
neii1 |
|- ( ( K e. Top /\ N e. ( ( nei ` K ) ` T ) ) -> N C_ U. K ) |
| 14 |
10 2 13
|
syl2anc |
|- ( ph -> N C_ U. K ) |
| 15 |
5
|
neiint |
|- ( ( K e. Top /\ T C_ U. K /\ N C_ U. K ) -> ( N e. ( ( nei ` K ) ` T ) <-> T C_ ( ( int ` K ) ` N ) ) ) |
| 16 |
10 12 14 15
|
syl3anc |
|- ( ph -> ( N e. ( ( nei ` K ) ` T ) <-> T C_ ( ( int ` K ) ` N ) ) ) |
| 17 |
2 16
|
mpbid |
|- ( ph -> T C_ ( ( int ` K ) ` N ) ) |
| 18 |
|
sspreima |
|- ( ( Fun F /\ T C_ ( ( int ` K ) ` N ) ) -> ( `' F " T ) C_ ( `' F " ( ( int ` K ) ` N ) ) ) |
| 19 |
8 17 18
|
syl2anc |
|- ( ph -> ( `' F " T ) C_ ( `' F " ( ( int ` K ) ` N ) ) ) |
| 20 |
3 19
|
sstrd |
|- ( ph -> S C_ ( `' F " ( ( int ` K ) ` N ) ) ) |
| 21 |
5
|
cnntri |
|- ( ( F e. ( J Cn K ) /\ N C_ U. K ) -> ( `' F " ( ( int ` K ) ` N ) ) C_ ( ( int ` J ) ` ( `' F " N ) ) ) |
| 22 |
1 14 21
|
syl2anc |
|- ( ph -> ( `' F " ( ( int ` K ) ` N ) ) C_ ( ( int ` J ) ` ( `' F " N ) ) ) |
| 23 |
20 22
|
sstrd |
|- ( ph -> S C_ ( ( int ` J ) ` ( `' F " N ) ) ) |
| 24 |
|
cntop1 |
|- ( F e. ( J Cn K ) -> J e. Top ) |
| 25 |
1 24
|
syl |
|- ( ph -> J e. Top ) |
| 26 |
|
sspreima |
|- ( ( Fun F /\ T C_ U. K ) -> ( `' F " T ) C_ ( `' F " U. K ) ) |
| 27 |
8 12 26
|
syl2anc |
|- ( ph -> ( `' F " T ) C_ ( `' F " U. K ) ) |
| 28 |
|
fimacnv |
|- ( F : U. J --> U. K -> ( `' F " U. K ) = U. J ) |
| 29 |
7 28
|
syl |
|- ( ph -> ( `' F " U. K ) = U. J ) |
| 30 |
27 29
|
sseqtrd |
|- ( ph -> ( `' F " T ) C_ U. J ) |
| 31 |
3 30
|
sstrd |
|- ( ph -> S C_ U. J ) |
| 32 |
|
sspreima |
|- ( ( Fun F /\ N C_ U. K ) -> ( `' F " N ) C_ ( `' F " U. K ) ) |
| 33 |
8 14 32
|
syl2anc |
|- ( ph -> ( `' F " N ) C_ ( `' F " U. K ) ) |
| 34 |
33 29
|
sseqtrd |
|- ( ph -> ( `' F " N ) C_ U. J ) |
| 35 |
4
|
neiint |
|- ( ( J e. Top /\ S C_ U. J /\ ( `' F " N ) C_ U. J ) -> ( ( `' F " N ) e. ( ( nei ` J ) ` S ) <-> S C_ ( ( int ` J ) ` ( `' F " N ) ) ) ) |
| 36 |
25 31 34 35
|
syl3anc |
|- ( ph -> ( ( `' F " N ) e. ( ( nei ` J ) ` S ) <-> S C_ ( ( int ` J ) ` ( `' F " N ) ) ) ) |
| 37 |
23 36
|
mpbird |
|- ( ph -> ( `' F " N ) e. ( ( nei ` J ) ` S ) ) |