| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncls2i.1 |
|- Y = U. K |
| 2 |
|
cntop1 |
|- ( F e. ( J Cn K ) -> J e. Top ) |
| 3 |
2
|
adantr |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> J e. Top ) |
| 4 |
|
cnvimass |
|- ( `' F " S ) C_ dom F |
| 5 |
|
eqid |
|- U. J = U. J |
| 6 |
5 1
|
cnf |
|- ( F e. ( J Cn K ) -> F : U. J --> Y ) |
| 7 |
6
|
fdmd |
|- ( F e. ( J Cn K ) -> dom F = U. J ) |
| 8 |
7
|
adantr |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> dom F = U. J ) |
| 9 |
4 8
|
sseqtrid |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " S ) C_ U. J ) |
| 10 |
|
cntop2 |
|- ( F e. ( J Cn K ) -> K e. Top ) |
| 11 |
1
|
ntropn |
|- ( ( K e. Top /\ S C_ Y ) -> ( ( int ` K ) ` S ) e. K ) |
| 12 |
10 11
|
sylan |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( ( int ` K ) ` S ) e. K ) |
| 13 |
|
cnima |
|- ( ( F e. ( J Cn K ) /\ ( ( int ` K ) ` S ) e. K ) -> ( `' F " ( ( int ` K ) ` S ) ) e. J ) |
| 14 |
12 13
|
syldan |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " ( ( int ` K ) ` S ) ) e. J ) |
| 15 |
1
|
ntrss2 |
|- ( ( K e. Top /\ S C_ Y ) -> ( ( int ` K ) ` S ) C_ S ) |
| 16 |
10 15
|
sylan |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( ( int ` K ) ` S ) C_ S ) |
| 17 |
|
imass2 |
|- ( ( ( int ` K ) ` S ) C_ S -> ( `' F " ( ( int ` K ) ` S ) ) C_ ( `' F " S ) ) |
| 18 |
16 17
|
syl |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " ( ( int ` K ) ` S ) ) C_ ( `' F " S ) ) |
| 19 |
5
|
ssntr |
|- ( ( ( J e. Top /\ ( `' F " S ) C_ U. J ) /\ ( ( `' F " ( ( int ` K ) ` S ) ) e. J /\ ( `' F " ( ( int ` K ) ` S ) ) C_ ( `' F " S ) ) ) -> ( `' F " ( ( int ` K ) ` S ) ) C_ ( ( int ` J ) ` ( `' F " S ) ) ) |
| 20 |
3 9 14 18 19
|
syl22anc |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " ( ( int ` K ) ` S ) ) C_ ( ( int ` J ) ` ( `' F " S ) ) ) |