Step |
Hyp |
Ref |
Expression |
1 |
|
cncls2i.1 |
⊢ 𝑌 = ∪ 𝐾 |
2 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → 𝐽 ∈ Top ) |
4 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑆 ) ⊆ dom 𝐹 |
5 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
6 |
5 1
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
7 |
6
|
fdmd |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → dom 𝐹 = ∪ 𝐽 ) |
8 |
7
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → dom 𝐹 = ∪ 𝐽 ) |
9 |
4 8
|
sseqtrid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝑆 ) ⊆ ∪ 𝐽 ) |
10 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
11 |
1
|
ntropn |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐾 ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐾 ) |
13 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |
14 |
12 13
|
syldan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |
15 |
1
|
ntrss2 |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
16 |
10 15
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
17 |
|
imass2 |
⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ) |
19 |
5
|
ssntr |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝑆 ) ⊆ ∪ 𝐽 ) ∧ ( ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ 𝐽 ∧ ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ) ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑆 ) ) ) |
20 |
3 9 14 18 19
|
syl22anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑆 ) ) ) |