| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnneiima.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 2 |
|
cnneiima.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑇 ) ) |
| 3 |
|
cnneiima.3 |
⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ 𝐹 “ 𝑇 ) ) |
| 4 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 5 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 6 |
4 5
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 8 |
7
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 9 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 11 |
5
|
neiss2 |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑇 ) ) → 𝑇 ⊆ ∪ 𝐾 ) |
| 12 |
10 2 11
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ⊆ ∪ 𝐾 ) |
| 13 |
5
|
neii1 |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑇 ) ) → 𝑁 ⊆ ∪ 𝐾 ) |
| 14 |
10 2 13
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ⊆ ∪ 𝐾 ) |
| 15 |
5
|
neiint |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑇 ⊆ ∪ 𝐾 ∧ 𝑁 ⊆ ∪ 𝐾 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑇 ) ↔ 𝑇 ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑁 ) ) ) |
| 16 |
10 12 14 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝑇 ) ↔ 𝑇 ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑁 ) ) ) |
| 17 |
2 16
|
mpbid |
⊢ ( 𝜑 → 𝑇 ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑁 ) ) |
| 18 |
|
sspreima |
⊢ ( ( Fun 𝐹 ∧ 𝑇 ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑁 ) ) → ( ◡ 𝐹 “ 𝑇 ) ⊆ ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑁 ) ) ) |
| 19 |
8 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑇 ) ⊆ ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑁 ) ) ) |
| 20 |
3 19
|
sstrd |
⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑁 ) ) ) |
| 21 |
5
|
cnntri |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑁 ⊆ ∪ 𝐾 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑁 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑁 ) ) ) |
| 22 |
1 14 21
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑁 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑁 ) ) ) |
| 23 |
20 22
|
sstrd |
⊢ ( 𝜑 → 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑁 ) ) ) |
| 24 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
| 25 |
1 24
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 26 |
|
sspreima |
⊢ ( ( Fun 𝐹 ∧ 𝑇 ⊆ ∪ 𝐾 ) → ( ◡ 𝐹 “ 𝑇 ) ⊆ ( ◡ 𝐹 “ ∪ 𝐾 ) ) |
| 27 |
8 12 26
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑇 ) ⊆ ( ◡ 𝐹 “ ∪ 𝐾 ) ) |
| 28 |
|
fimacnv |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → ( ◡ 𝐹 “ ∪ 𝐾 ) = ∪ 𝐽 ) |
| 29 |
7 28
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ∪ 𝐾 ) = ∪ 𝐽 ) |
| 30 |
27 29
|
sseqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑇 ) ⊆ ∪ 𝐽 ) |
| 31 |
3 30
|
sstrd |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 32 |
|
sspreima |
⊢ ( ( Fun 𝐹 ∧ 𝑁 ⊆ ∪ 𝐾 ) → ( ◡ 𝐹 “ 𝑁 ) ⊆ ( ◡ 𝐹 “ ∪ 𝐾 ) ) |
| 33 |
8 14 32
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑁 ) ⊆ ( ◡ 𝐹 “ ∪ 𝐾 ) ) |
| 34 |
33 29
|
sseqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑁 ) ⊆ ∪ 𝐽 ) |
| 35 |
4
|
neiint |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ ( ◡ 𝐹 “ 𝑁 ) ⊆ ∪ 𝐽 ) → ( ( ◡ 𝐹 “ 𝑁 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑁 ) ) ) ) |
| 36 |
25 31 34 35
|
syl3anc |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑁 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑆 ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑁 ) ) ) ) |
| 37 |
23 36
|
mpbird |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑁 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |