| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sepfsepc.1 |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → 𝑓 ∈ ( 𝐽 Cn II ) ) |
| 3 |
|
0re |
⊢ 0 ∈ ℝ |
| 4 |
|
1re |
⊢ 1 ∈ ℝ |
| 5 |
|
0le0 |
⊢ 0 ≤ 0 |
| 6 |
|
3re |
⊢ 3 ∈ ℝ |
| 7 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 8 |
6 7
|
rereccli |
⊢ ( 1 / 3 ) ∈ ℝ |
| 9 |
|
1lt3 |
⊢ 1 < 3 |
| 10 |
|
recgt1i |
⊢ ( ( 3 ∈ ℝ ∧ 1 < 3 ) → ( 0 < ( 1 / 3 ) ∧ ( 1 / 3 ) < 1 ) ) |
| 11 |
6 9 10
|
mp2an |
⊢ ( 0 < ( 1 / 3 ) ∧ ( 1 / 3 ) < 1 ) |
| 12 |
11
|
simpri |
⊢ ( 1 / 3 ) < 1 |
| 13 |
8 4 12
|
ltleii |
⊢ ( 1 / 3 ) ≤ 1 |
| 14 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ 0 ∧ ( 1 / 3 ) ≤ 1 ) ) → ( 0 [,] ( 1 / 3 ) ) ⊆ ( 0 [,] 1 ) ) |
| 15 |
3 4 5 13 14
|
mp4an |
⊢ ( 0 [,] ( 1 / 3 ) ) ⊆ ( 0 [,] 1 ) |
| 16 |
|
i0oii |
⊢ ( ( 1 / 3 ) ≤ 1 → ( 0 [,) ( 1 / 3 ) ) ∈ II ) |
| 17 |
13 16
|
ax-mp |
⊢ ( 0 [,) ( 1 / 3 ) ) ∈ II |
| 18 |
11
|
simpli |
⊢ 0 < ( 1 / 3 ) |
| 19 |
8
|
rexri |
⊢ ( 1 / 3 ) ∈ ℝ* |
| 20 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 3 ) ∈ ℝ* ) → ( 0 ∈ ( 0 [,) ( 1 / 3 ) ) ↔ ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < ( 1 / 3 ) ) ) ) |
| 21 |
3 19 20
|
mp2an |
⊢ ( 0 ∈ ( 0 [,) ( 1 / 3 ) ) ↔ ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < ( 1 / 3 ) ) ) |
| 22 |
21
|
biimpri |
⊢ ( ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < ( 1 / 3 ) ) → 0 ∈ ( 0 [,) ( 1 / 3 ) ) ) |
| 23 |
22
|
snssd |
⊢ ( ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < ( 1 / 3 ) ) → { 0 } ⊆ ( 0 [,) ( 1 / 3 ) ) ) |
| 24 |
3 5 18 23
|
mp3an |
⊢ { 0 } ⊆ ( 0 [,) ( 1 / 3 ) ) |
| 25 |
|
icossicc |
⊢ ( 0 [,) ( 1 / 3 ) ) ⊆ ( 0 [,] ( 1 / 3 ) ) |
| 26 |
24 25
|
pm3.2i |
⊢ ( { 0 } ⊆ ( 0 [,) ( 1 / 3 ) ) ∧ ( 0 [,) ( 1 / 3 ) ) ⊆ ( 0 [,] ( 1 / 3 ) ) ) |
| 27 |
|
sseq2 |
⊢ ( 𝑔 = ( 0 [,) ( 1 / 3 ) ) → ( { 0 } ⊆ 𝑔 ↔ { 0 } ⊆ ( 0 [,) ( 1 / 3 ) ) ) ) |
| 28 |
|
sseq1 |
⊢ ( 𝑔 = ( 0 [,) ( 1 / 3 ) ) → ( 𝑔 ⊆ ( 0 [,] ( 1 / 3 ) ) ↔ ( 0 [,) ( 1 / 3 ) ) ⊆ ( 0 [,] ( 1 / 3 ) ) ) ) |
| 29 |
27 28
|
anbi12d |
⊢ ( 𝑔 = ( 0 [,) ( 1 / 3 ) ) → ( ( { 0 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( 0 [,] ( 1 / 3 ) ) ) ↔ ( { 0 } ⊆ ( 0 [,) ( 1 / 3 ) ) ∧ ( 0 [,) ( 1 / 3 ) ) ⊆ ( 0 [,] ( 1 / 3 ) ) ) ) ) |
| 30 |
29
|
rspcev |
⊢ ( ( ( 0 [,) ( 1 / 3 ) ) ∈ II ∧ ( { 0 } ⊆ ( 0 [,) ( 1 / 3 ) ) ∧ ( 0 [,) ( 1 / 3 ) ) ⊆ ( 0 [,] ( 1 / 3 ) ) ) ) → ∃ 𝑔 ∈ II ( { 0 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( 0 [,] ( 1 / 3 ) ) ) ) |
| 31 |
17 26 30
|
mp2an |
⊢ ∃ 𝑔 ∈ II ( { 0 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( 0 [,] ( 1 / 3 ) ) ) |
| 32 |
|
iitop |
⊢ II ∈ Top |
| 33 |
24 25
|
sstri |
⊢ { 0 } ⊆ ( 0 [,] ( 1 / 3 ) ) |
| 34 |
33 15
|
sstri |
⊢ { 0 } ⊆ ( 0 [,] 1 ) |
| 35 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 36 |
35
|
isnei |
⊢ ( ( II ∈ Top ∧ { 0 } ⊆ ( 0 [,] 1 ) ) → ( ( 0 [,] ( 1 / 3 ) ) ∈ ( ( nei ‘ II ) ‘ { 0 } ) ↔ ( ( 0 [,] ( 1 / 3 ) ) ⊆ ( 0 [,] 1 ) ∧ ∃ 𝑔 ∈ II ( { 0 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( 0 [,] ( 1 / 3 ) ) ) ) ) ) |
| 37 |
32 34 36
|
mp2an |
⊢ ( ( 0 [,] ( 1 / 3 ) ) ∈ ( ( nei ‘ II ) ‘ { 0 } ) ↔ ( ( 0 [,] ( 1 / 3 ) ) ⊆ ( 0 [,] 1 ) ∧ ∃ 𝑔 ∈ II ( { 0 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( 0 [,] ( 1 / 3 ) ) ) ) ) |
| 38 |
15 31 37
|
mpbir2an |
⊢ ( 0 [,] ( 1 / 3 ) ) ∈ ( ( nei ‘ II ) ‘ { 0 } ) |
| 39 |
38
|
a1i |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( 0 [,] ( 1 / 3 ) ) ∈ ( ( nei ‘ II ) ‘ { 0 } ) ) |
| 40 |
|
simprl |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ) |
| 41 |
2 39 40
|
cnneiima |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 42 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
| 43 |
|
1le1 |
⊢ 1 ≤ 1 |
| 44 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 2 ) ∧ 1 ≤ 1 ) ) → ( ( 1 / 2 ) [,] 1 ) ⊆ ( 0 [,] 1 ) ) |
| 45 |
3 4 42 43 44
|
mp4an |
⊢ ( ( 1 / 2 ) [,] 1 ) ⊆ ( 0 [,] 1 ) |
| 46 |
|
io1ii |
⊢ ( 0 ≤ ( 1 / 2 ) → ( ( 1 / 2 ) (,] 1 ) ∈ II ) |
| 47 |
42 46
|
ax-mp |
⊢ ( ( 1 / 2 ) (,] 1 ) ∈ II |
| 48 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 49 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 50 |
49
|
rexri |
⊢ ( 1 / 2 ) ∈ ℝ* |
| 51 |
|
elioc2 |
⊢ ( ( ( 1 / 2 ) ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 1 ∈ ( ( 1 / 2 ) (,] 1 ) ↔ ( 1 ∈ ℝ ∧ ( 1 / 2 ) < 1 ∧ 1 ≤ 1 ) ) ) |
| 52 |
50 4 51
|
mp2an |
⊢ ( 1 ∈ ( ( 1 / 2 ) (,] 1 ) ↔ ( 1 ∈ ℝ ∧ ( 1 / 2 ) < 1 ∧ 1 ≤ 1 ) ) |
| 53 |
52
|
biimpri |
⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 2 ) < 1 ∧ 1 ≤ 1 ) → 1 ∈ ( ( 1 / 2 ) (,] 1 ) ) |
| 54 |
53
|
snssd |
⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 2 ) < 1 ∧ 1 ≤ 1 ) → { 1 } ⊆ ( ( 1 / 2 ) (,] 1 ) ) |
| 55 |
4 48 43 54
|
mp3an |
⊢ { 1 } ⊆ ( ( 1 / 2 ) (,] 1 ) |
| 56 |
|
iocssicc |
⊢ ( ( 1 / 2 ) (,] 1 ) ⊆ ( ( 1 / 2 ) [,] 1 ) |
| 57 |
55 56
|
pm3.2i |
⊢ ( { 1 } ⊆ ( ( 1 / 2 ) (,] 1 ) ∧ ( ( 1 / 2 ) (,] 1 ) ⊆ ( ( 1 / 2 ) [,] 1 ) ) |
| 58 |
|
sseq2 |
⊢ ( ℎ = ( ( 1 / 2 ) (,] 1 ) → ( { 1 } ⊆ ℎ ↔ { 1 } ⊆ ( ( 1 / 2 ) (,] 1 ) ) ) |
| 59 |
|
sseq1 |
⊢ ( ℎ = ( ( 1 / 2 ) (,] 1 ) → ( ℎ ⊆ ( ( 1 / 2 ) [,] 1 ) ↔ ( ( 1 / 2 ) (,] 1 ) ⊆ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 60 |
58 59
|
anbi12d |
⊢ ( ℎ = ( ( 1 / 2 ) (,] 1 ) → ( ( { 1 } ⊆ ℎ ∧ ℎ ⊆ ( ( 1 / 2 ) [,] 1 ) ) ↔ ( { 1 } ⊆ ( ( 1 / 2 ) (,] 1 ) ∧ ( ( 1 / 2 ) (,] 1 ) ⊆ ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 61 |
60
|
rspcev |
⊢ ( ( ( ( 1 / 2 ) (,] 1 ) ∈ II ∧ ( { 1 } ⊆ ( ( 1 / 2 ) (,] 1 ) ∧ ( ( 1 / 2 ) (,] 1 ) ⊆ ( ( 1 / 2 ) [,] 1 ) ) ) → ∃ ℎ ∈ II ( { 1 } ⊆ ℎ ∧ ℎ ⊆ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 62 |
47 57 61
|
mp2an |
⊢ ∃ ℎ ∈ II ( { 1 } ⊆ ℎ ∧ ℎ ⊆ ( ( 1 / 2 ) [,] 1 ) ) |
| 63 |
55 56
|
sstri |
⊢ { 1 } ⊆ ( ( 1 / 2 ) [,] 1 ) |
| 64 |
63 45
|
sstri |
⊢ { 1 } ⊆ ( 0 [,] 1 ) |
| 65 |
35
|
isnei |
⊢ ( ( II ∈ Top ∧ { 1 } ⊆ ( 0 [,] 1 ) ) → ( ( ( 1 / 2 ) [,] 1 ) ∈ ( ( nei ‘ II ) ‘ { 1 } ) ↔ ( ( ( 1 / 2 ) [,] 1 ) ⊆ ( 0 [,] 1 ) ∧ ∃ ℎ ∈ II ( { 1 } ⊆ ℎ ∧ ℎ ⊆ ( ( 1 / 2 ) [,] 1 ) ) ) ) ) |
| 66 |
32 64 65
|
mp2an |
⊢ ( ( ( 1 / 2 ) [,] 1 ) ∈ ( ( nei ‘ II ) ‘ { 1 } ) ↔ ( ( ( 1 / 2 ) [,] 1 ) ⊆ ( 0 [,] 1 ) ∧ ∃ ℎ ∈ II ( { 1 } ⊆ ℎ ∧ ℎ ⊆ ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 67 |
45 62 66
|
mpbir2an |
⊢ ( ( 1 / 2 ) [,] 1 ) ∈ ( ( nei ‘ II ) ‘ { 1 } ) |
| 68 |
67
|
a1i |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( ( 1 / 2 ) [,] 1 ) ∈ ( ( nei ‘ II ) ‘ { 1 } ) ) |
| 69 |
|
simprr |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) |
| 70 |
2 68 69
|
cnneiima |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ) |
| 71 |
|
icccldii |
⊢ ( ( 0 ≤ 0 ∧ ( 1 / 3 ) ≤ 1 ) → ( 0 [,] ( 1 / 3 ) ) ∈ ( Clsd ‘ II ) ) |
| 72 |
5 13 71
|
mp2an |
⊢ ( 0 [,] ( 1 / 3 ) ) ∈ ( Clsd ‘ II ) |
| 73 |
|
cnclima |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 0 [,] ( 1 / 3 ) ) ∈ ( Clsd ‘ II ) ) → ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 74 |
2 72 73
|
sylancl |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 75 |
|
icccldii |
⊢ ( ( 0 ≤ ( 1 / 2 ) ∧ 1 ≤ 1 ) → ( ( 1 / 2 ) [,] 1 ) ∈ ( Clsd ‘ II ) ) |
| 76 |
42 43 75
|
mp2an |
⊢ ( ( 1 / 2 ) [,] 1 ) ∈ ( Clsd ‘ II ) |
| 77 |
|
cnclima |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( ( 1 / 2 ) [,] 1 ) ∈ ( Clsd ‘ II ) ) → ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 78 |
2 76 77
|
sylancl |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 79 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 80 |
79 35
|
cnf |
⊢ ( 𝑓 ∈ ( 𝐽 Cn II ) → 𝑓 : ∪ 𝐽 ⟶ ( 0 [,] 1 ) ) |
| 81 |
80
|
ffund |
⊢ ( 𝑓 ∈ ( 𝐽 Cn II ) → Fun 𝑓 ) |
| 82 |
2 81
|
syl |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → Fun 𝑓 ) |
| 83 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 84 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 85 |
|
2lt3 |
⊢ 2 < 3 |
| 86 |
|
2re |
⊢ 2 ∈ ℝ |
| 87 |
|
2pos |
⊢ 0 < 2 |
| 88 |
|
3pos |
⊢ 0 < 3 |
| 89 |
86 6 87 88
|
ltrecii |
⊢ ( 2 < 3 ↔ ( 1 / 3 ) < ( 1 / 2 ) ) |
| 90 |
85 89
|
mpbi |
⊢ ( 1 / 3 ) < ( 1 / 2 ) |
| 91 |
|
iccdisj2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( 1 / 3 ) < ( 1 / 2 ) ) → ( ( 0 [,] ( 1 / 3 ) ) ∩ ( ( 1 / 2 ) [,] 1 ) ) = ∅ ) |
| 92 |
83 84 90 91
|
mp3an |
⊢ ( ( 0 [,] ( 1 / 3 ) ) ∩ ( ( 1 / 2 ) [,] 1 ) ) = ∅ |
| 93 |
92
|
a1i |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( ( 0 [,] ( 1 / 3 ) ) ∩ ( ( 1 / 2 ) [,] 1 ) ) = ∅ ) |
| 94 |
|
ssidd |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ⊆ ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ) |
| 95 |
|
ssidd |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ⊆ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 96 |
82 93 94 95
|
predisj |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ) = ∅ ) |
| 97 |
|
eleq1 |
⊢ ( 𝑛 = ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) → ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 98 |
|
ineq1 |
⊢ ( 𝑛 = ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) → ( 𝑛 ∩ 𝑚 ) = ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ 𝑚 ) ) |
| 99 |
98
|
eqeq1d |
⊢ ( 𝑛 = ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) → ( ( 𝑛 ∩ 𝑚 ) = ∅ ↔ ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ 𝑚 ) = ∅ ) ) |
| 100 |
97 99
|
3anbi13d |
⊢ ( 𝑛 = ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) → ( ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ 𝑚 ) = ∅ ) ) ) |
| 101 |
|
eleq1 |
⊢ ( 𝑚 = ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) → ( 𝑚 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 102 |
|
ineq2 |
⊢ ( 𝑚 = ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) → ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ 𝑚 ) = ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 103 |
102
|
eqeq1d |
⊢ ( 𝑚 = ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) → ( ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ 𝑚 ) = ∅ ↔ ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ) = ∅ ) ) |
| 104 |
101 103
|
3anbi23d |
⊢ ( 𝑚 = ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) → ( ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ 𝑚 ) = ∅ ) ↔ ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ) = ∅ ) ) ) |
| 105 |
100 104
|
rspc2ev |
⊢ ( ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ∧ ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( ◡ 𝑓 “ ( 0 [,] ( 1 / 3 ) ) ) ∩ ( ◡ 𝑓 “ ( ( 1 / 2 ) [,] 1 ) ) ) = ∅ ) ) → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 106 |
41 70 74 78 96 105
|
syl113anc |
⊢ ( ( 𝑓 ∈ ( 𝐽 Cn II ) ∧ ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) ) → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 107 |
106
|
rexlimiva |
⊢ ( ∃ 𝑓 ∈ ( 𝐽 Cn II ) ( 𝑆 ⊆ ( ◡ 𝑓 “ { 0 } ) ∧ 𝑇 ⊆ ( ◡ 𝑓 “ { 1 } ) ) → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 108 |
1 107
|
syl |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |