Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
⊢ 0 ∈ ℝ* |
2 |
|
lerelxr |
⊢ ≤ ⊆ ( ℝ* × ℝ* ) |
3 |
2
|
brel |
⊢ ( 0 ≤ 𝐴 → ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ) |
4 |
3
|
simprd |
⊢ ( 0 ≤ 𝐴 → 𝐴 ∈ ℝ* ) |
5 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
6 |
|
xrlelttr |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑥 ) → 0 < 𝑥 ) ) |
7 |
|
xrltle |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 0 < 𝑥 → 0 ≤ 𝑥 ) ) |
8 |
7
|
3adant2 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 0 < 𝑥 → 0 ≤ 𝑥 ) ) |
9 |
6 8
|
syld |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑥 ) → 0 ≤ 𝑥 ) ) |
10 |
1 4 5 9
|
mp3an3an |
⊢ ( ( 0 ≤ 𝐴 ∧ 𝑥 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑥 ) → 0 ≤ 𝑥 ) ) |
11 |
10
|
imp |
⊢ ( ( ( 0 ≤ 𝐴 ∧ 𝑥 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑥 ) ) → 0 ≤ 𝑥 ) |
12 |
11
|
3impdi |
⊢ ( ( 0 ≤ 𝐴 ∧ 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) → 0 ≤ 𝑥 ) |
13 |
12
|
3expib |
⊢ ( 0 ≤ 𝐴 → ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) → 0 ≤ 𝑥 ) ) |
14 |
13
|
pm4.71d |
⊢ ( 0 ≤ 𝐴 → ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 0 ≤ 𝑥 ) ) ) |
15 |
14
|
anbi1d |
⊢ ( 0 ≤ 𝐴 → ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 𝑥 ≤ 1 ) ↔ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 ≤ 1 ) ) ) |
16 |
|
df-3an |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 1 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 𝑥 ≤ 1 ) ) |
17 |
|
3anass |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
18 |
17
|
anbi2i |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
19 |
|
anandi |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝐴 < 𝑥 ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
20 |
|
anass |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 ≤ 1 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
21 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 < 𝑥 ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
22 |
20 21
|
bitr2i |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝐴 < 𝑥 ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ↔ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 ≤ 1 ) ) |
23 |
18 19 22
|
3bitr2i |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ↔ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 0 ≤ 𝑥 ) ∧ 𝑥 ≤ 1 ) ) |
24 |
15 16 23
|
3bitr4g |
⊢ ( 0 ≤ 𝐴 → ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 1 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
25 |
|
1re |
⊢ 1 ∈ ℝ |
26 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] 1 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
27 |
4 25 26
|
sylancl |
⊢ ( 0 ≤ 𝐴 → ( 𝑥 ∈ ( 𝐴 (,] 1 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
28 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐴 (,) +∞ ) ∩ ( 0 [,] 1 ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) ) |
29 |
|
elicc01 |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) |
30 |
29
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
31 |
28 30
|
bitri |
⊢ ( 𝑥 ∈ ( ( 𝐴 (,) +∞ ) ∩ ( 0 [,] 1 ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
32 |
|
elioopnf |
⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ) ) |
33 |
4 32
|
syl |
⊢ ( 0 ≤ 𝐴 → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ) ) |
34 |
33
|
anbi1d |
⊢ ( 0 ≤ 𝐴 → ( ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
35 |
31 34
|
syl5bb |
⊢ ( 0 ≤ 𝐴 → ( 𝑥 ∈ ( ( 𝐴 (,) +∞ ) ∩ ( 0 [,] 1 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
36 |
24 27 35
|
3bitr4rd |
⊢ ( 0 ≤ 𝐴 → ( 𝑥 ∈ ( ( 𝐴 (,) +∞ ) ∩ ( 0 [,] 1 ) ) ↔ 𝑥 ∈ ( 𝐴 (,] 1 ) ) ) |
37 |
36
|
eqrdv |
⊢ ( 0 ≤ 𝐴 → ( ( 𝐴 (,) +∞ ) ∩ ( 0 [,] 1 ) ) = ( 𝐴 (,] 1 ) ) |
38 |
|
fvex |
⊢ ( topGen ‘ ran (,) ) ∈ V |
39 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
40 |
|
iooretop |
⊢ ( 𝐴 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
41 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ V ∧ ( 0 [,] 1 ) ∈ V ∧ ( 𝐴 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( 𝐴 (,) +∞ ) ∩ ( 0 [,] 1 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) |
42 |
38 39 40 41
|
mp3an |
⊢ ( ( 𝐴 (,) +∞ ) ∩ ( 0 [,] 1 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
43 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
44 |
42 43
|
eleqtrri |
⊢ ( ( 𝐴 (,) +∞ ) ∩ ( 0 [,] 1 ) ) ∈ II |
45 |
37 44
|
eqeltrrdi |
⊢ ( 0 ≤ 𝐴 → ( 𝐴 (,] 1 ) ∈ II ) |