Step |
Hyp |
Ref |
Expression |
1 |
|
anandi3r |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ∧ 𝑥 < 𝐴 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑥 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) |
2 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
3 |
|
lerelxr |
⊢ ≤ ⊆ ( ℝ* × ℝ* ) |
4 |
3
|
brel |
⊢ ( 𝐴 ≤ 1 → ( 𝐴 ∈ ℝ* ∧ 1 ∈ ℝ* ) ) |
5 |
4
|
simpld |
⊢ ( 𝐴 ≤ 1 → 𝐴 ∈ ℝ* ) |
6 |
|
1xr |
⊢ 1 ∈ ℝ* |
7 |
|
xrltletr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( 𝑥 < 𝐴 ∧ 𝐴 ≤ 1 ) → 𝑥 < 1 ) ) |
8 |
|
xrltle |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝑥 < 1 → 𝑥 ≤ 1 ) ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝑥 < 1 → 𝑥 ≤ 1 ) ) |
10 |
7 9
|
syld |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( 𝑥 < 𝐴 ∧ 𝐴 ≤ 1 ) → 𝑥 ≤ 1 ) ) |
11 |
6 10
|
mp3an3 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑥 < 𝐴 ∧ 𝐴 ≤ 1 ) → 𝑥 ≤ 1 ) ) |
12 |
2 5 11
|
syl2an |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ) → ( ( 𝑥 < 𝐴 ∧ 𝐴 ≤ 1 ) → 𝑥 ≤ 1 ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑥 < 𝐴 ∧ 𝐴 ≤ 1 ) ) → 𝑥 ≤ 1 ) |
14 |
1 13
|
sylbi |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ∧ 𝑥 < 𝐴 ) → 𝑥 ≤ 1 ) |
15 |
14
|
3com12 |
⊢ ( ( 𝐴 ≤ 1 ∧ 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) → 𝑥 ≤ 1 ) |
16 |
15
|
3expib |
⊢ ( 𝐴 ≤ 1 → ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) → 𝑥 ≤ 1 ) ) |
17 |
16
|
pm4.71d |
⊢ ( 𝐴 ≤ 1 → ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ 𝑥 ≤ 1 ) ) ) |
18 |
17
|
anbi1d |
⊢ ( 𝐴 ≤ 1 → ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ 0 ≤ 𝑥 ) ↔ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ 𝑥 ≤ 1 ) ∧ 0 ≤ 𝑥 ) ) ) |
19 |
|
3anan32 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ 0 ≤ 𝑥 ) ) |
20 |
|
3anass |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
21 |
20
|
anbi2i |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
22 |
|
anandi |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 < 𝐴 ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
23 |
|
3anass |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
24 |
|
3anan32 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ↔ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ 𝑥 ≤ 1 ) ∧ 0 ≤ 𝑥 ) ) |
25 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 < 𝐴 ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
26 |
23 24 25
|
3bitr3ri |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 < 𝐴 ∧ ( 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ↔ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ 𝑥 ≤ 1 ) ∧ 0 ≤ 𝑥 ) ) |
27 |
21 22 26
|
3bitr2i |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ↔ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ 𝑥 ≤ 1 ) ∧ 0 ≤ 𝑥 ) ) |
28 |
18 19 27
|
3bitr4g |
⊢ ( 𝐴 ≤ 1 → ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
29 |
|
0re |
⊢ 0 ∈ ℝ |
30 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 ∈ ( 0 [,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ) ) |
31 |
29 5 30
|
sylancr |
⊢ ( 𝐴 ≤ 1 → ( 𝑥 ∈ ( 0 [,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ) ) |
32 |
|
elin |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐴 ) ∩ ( 0 [,] 1 ) ) ↔ ( 𝑥 ∈ ( -∞ (,) 𝐴 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) ) |
33 |
|
elicc01 |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) |
34 |
33
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( -∞ (,) 𝐴 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) ↔ ( 𝑥 ∈ ( -∞ (,) 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
35 |
32 34
|
bitri |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐴 ) ∩ ( 0 [,] 1 ) ) ↔ ( 𝑥 ∈ ( -∞ (,) 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) |
36 |
|
elioomnf |
⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ( -∞ (,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ) ) |
37 |
5 36
|
syl |
⊢ ( 𝐴 ≤ 1 → ( 𝑥 ∈ ( -∞ (,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ) ) |
38 |
37
|
anbi1d |
⊢ ( 𝐴 ≤ 1 → ( ( 𝑥 ∈ ( -∞ (,) 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
39 |
35 38
|
syl5bb |
⊢ ( 𝐴 ≤ 1 → ( 𝑥 ∈ ( ( -∞ (,) 𝐴 ) ∩ ( 0 [,] 1 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) ) ) |
40 |
28 31 39
|
3bitr4rd |
⊢ ( 𝐴 ≤ 1 → ( 𝑥 ∈ ( ( -∞ (,) 𝐴 ) ∩ ( 0 [,] 1 ) ) ↔ 𝑥 ∈ ( 0 [,) 𝐴 ) ) ) |
41 |
40
|
eqrdv |
⊢ ( 𝐴 ≤ 1 → ( ( -∞ (,) 𝐴 ) ∩ ( 0 [,] 1 ) ) = ( 0 [,) 𝐴 ) ) |
42 |
|
fvex |
⊢ ( topGen ‘ ran (,) ) ∈ V |
43 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
44 |
|
iooretop |
⊢ ( -∞ (,) 𝐴 ) ∈ ( topGen ‘ ran (,) ) |
45 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ V ∧ ( 0 [,] 1 ) ∈ V ∧ ( -∞ (,) 𝐴 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( -∞ (,) 𝐴 ) ∩ ( 0 [,] 1 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) |
46 |
42 43 44 45
|
mp3an |
⊢ ( ( -∞ (,) 𝐴 ) ∩ ( 0 [,] 1 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
47 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
48 |
46 47
|
eleqtrri |
⊢ ( ( -∞ (,) 𝐴 ) ∩ ( 0 [,] 1 ) ) ∈ II |
49 |
41 48
|
eqeltrrdi |
⊢ ( 𝐴 ≤ 1 → ( 0 [,) 𝐴 ) ∈ II ) |