Metamath Proof Explorer


Theorem i0oii

Description: ( 0 [,) A ) is open in II . (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Assertion i0oii A 1 0 A II

Proof

Step Hyp Ref Expression
1 anandi3r x A 1 x < A x A 1 x < A A 1
2 rexr x x *
3 lerelxr * × *
4 3 brel A 1 A * 1 *
5 4 simpld A 1 A *
6 1xr 1 *
7 xrltletr x * A * 1 * x < A A 1 x < 1
8 xrltle x * 1 * x < 1 x 1
9 8 3adant2 x * A * 1 * x < 1 x 1
10 7 9 syld x * A * 1 * x < A A 1 x 1
11 6 10 mp3an3 x * A * x < A A 1 x 1
12 2 5 11 syl2an x A 1 x < A A 1 x 1
13 12 imp x A 1 x < A A 1 x 1
14 1 13 sylbi x A 1 x < A x 1
15 14 3com12 A 1 x x < A x 1
16 15 3expib A 1 x x < A x 1
17 16 pm4.71d A 1 x x < A x x < A x 1
18 17 anbi1d A 1 x x < A 0 x x x < A x 1 0 x
19 3anan32 x 0 x x < A x x < A 0 x
20 3anass x 0 x x 1 x 0 x x 1
21 20 anbi2i x x < A x 0 x x 1 x x < A x 0 x x 1
22 anandi x x < A 0 x x 1 x x < A x 0 x x 1
23 3anass x x < A 0 x x 1 x x < A 0 x x 1
24 3anan32 x x < A 0 x x 1 x x < A x 1 0 x
25 anass x x < A 0 x x 1 x x < A 0 x x 1
26 23 24 25 3bitr3ri x x < A 0 x x 1 x x < A x 1 0 x
27 21 22 26 3bitr2i x x < A x 0 x x 1 x x < A x 1 0 x
28 18 19 27 3bitr4g A 1 x 0 x x < A x x < A x 0 x x 1
29 0re 0
30 elico2 0 A * x 0 A x 0 x x < A
31 29 5 30 sylancr A 1 x 0 A x 0 x x < A
32 elin x −∞ A 0 1 x −∞ A x 0 1
33 elicc01 x 0 1 x 0 x x 1
34 33 anbi2i x −∞ A x 0 1 x −∞ A x 0 x x 1
35 32 34 bitri x −∞ A 0 1 x −∞ A x 0 x x 1
36 elioomnf A * x −∞ A x x < A
37 5 36 syl A 1 x −∞ A x x < A
38 37 anbi1d A 1 x −∞ A x 0 x x 1 x x < A x 0 x x 1
39 35 38 syl5bb A 1 x −∞ A 0 1 x x < A x 0 x x 1
40 28 31 39 3bitr4rd A 1 x −∞ A 0 1 x 0 A
41 40 eqrdv A 1 −∞ A 0 1 = 0 A
42 fvex topGen ran . V
43 ovex 0 1 V
44 iooretop −∞ A topGen ran .
45 elrestr topGen ran . V 0 1 V −∞ A topGen ran . −∞ A 0 1 topGen ran . 𝑡 0 1
46 42 43 44 45 mp3an −∞ A 0 1 topGen ran . 𝑡 0 1
47 dfii2 II = topGen ran . 𝑡 0 1
48 46 47 eleqtrri −∞ A 0 1 II
49 41 48 eqeltrrdi A 1 0 A II