Metamath Proof Explorer


Theorem sepcsepo

Description: If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although J e. Top might be redundant here, it is listed for explicitness. J e. Top can be obtained from neircl , adantr , and rexlimiva . (Contributed by Zhi Wang, 8-Sep-2024)

Ref Expression
Hypotheses sepdisj.1 ( 𝜑𝐽 ∈ Top )
sepcsepo.2 ( 𝜑 → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛𝑚 ) = ∅ ) )
Assertion sepcsepo ( 𝜑 → ∃ 𝑛𝐽𝑚𝐽 ( 𝑆𝑛𝑇𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 sepdisj.1 ( 𝜑𝐽 ∈ Top )
2 sepcsepo.2 ( 𝜑 → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛𝑚 ) = ∅ ) )
3 simp3 ( ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛𝑚 ) = ∅ ) → ( 𝑛𝑚 ) = ∅ )
4 3 reximi ( ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛𝑚 ) = ∅ ) → ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛𝑚 ) = ∅ )
5 4 reximi ( ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛𝑚 ) = ∅ ) → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛𝑚 ) = ∅ )
6 2 5 syl ( 𝜑 → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛𝑚 ) = ∅ )
7 1 sepnsepo ( 𝜑 → ( ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛𝑚 ) = ∅ ↔ ∃ 𝑛𝐽𝑚𝐽 ( 𝑆𝑛𝑇𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) )
8 6 7 mpbid ( 𝜑 → ∃ 𝑛𝐽𝑚𝐽 ( 𝑆𝑛𝑇𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) )