| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sepdisj.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 2 |
|
sepcsepo.2 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 3 |
|
simp3 |
⊢ ( ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) → ( 𝑛 ∩ 𝑚 ) = ∅ ) |
| 4 |
3
|
reximi |
⊢ ( ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) → ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∩ 𝑚 ) = ∅ ) |
| 5 |
4
|
reximi |
⊢ ( ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑚 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∩ 𝑚 ) = ∅ ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∩ 𝑚 ) = ∅ ) |
| 7 |
1
|
sepnsepo |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∃ 𝑚 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑇 ) ( 𝑛 ∩ 𝑚 ) = ∅ ↔ ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
| 8 |
6 7
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |