| Step |
Hyp |
Ref |
Expression |
| 1 |
|
serge0.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
serge0.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
| 3 |
|
serle.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. RR ) |
| 4 |
|
serle.4 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) <_ ( G ` k ) ) |
| 5 |
|
fveq2 |
|- ( x = k -> ( G ` x ) = ( G ` k ) ) |
| 6 |
|
fveq2 |
|- ( x = k -> ( F ` x ) = ( F ` k ) ) |
| 7 |
5 6
|
oveq12d |
|- ( x = k -> ( ( G ` x ) - ( F ` x ) ) = ( ( G ` k ) - ( F ` k ) ) ) |
| 8 |
|
eqid |
|- ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) = ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) |
| 9 |
|
ovex |
|- ( ( G ` k ) - ( F ` k ) ) e. _V |
| 10 |
7 8 9
|
fvmpt |
|- ( k e. _V -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) |
| 11 |
10
|
elv |
|- ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) |
| 12 |
3 2
|
resubcld |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( G ` k ) - ( F ` k ) ) e. RR ) |
| 13 |
11 12
|
eqeltrid |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) e. RR ) |
| 14 |
3 2
|
subge0d |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( 0 <_ ( ( G ` k ) - ( F ` k ) ) <-> ( F ` k ) <_ ( G ` k ) ) ) |
| 15 |
4 14
|
mpbird |
|- ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ ( ( G ` k ) - ( F ` k ) ) ) |
| 16 |
15 11
|
breqtrrdi |
|- ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) ) |
| 17 |
1 13 16
|
serge0 |
|- ( ph -> 0 <_ ( seq M ( + , ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ) ` N ) ) |
| 18 |
3
|
recnd |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
| 19 |
2
|
recnd |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
| 20 |
11
|
a1i |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) |
| 21 |
1 18 19 20
|
sersub |
|- ( ph -> ( seq M ( + , ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ) ` N ) = ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) ) |
| 22 |
17 21
|
breqtrd |
|- ( ph -> 0 <_ ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) ) |
| 23 |
|
readdcl |
|- ( ( k e. RR /\ x e. RR ) -> ( k + x ) e. RR ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ ( k e. RR /\ x e. RR ) ) -> ( k + x ) e. RR ) |
| 25 |
1 3 24
|
seqcl |
|- ( ph -> ( seq M ( + , G ) ` N ) e. RR ) |
| 26 |
1 2 24
|
seqcl |
|- ( ph -> ( seq M ( + , F ) ` N ) e. RR ) |
| 27 |
25 26
|
subge0d |
|- ( ph -> ( 0 <_ ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) <-> ( seq M ( + , F ) ` N ) <_ ( seq M ( + , G ) ` N ) ) ) |
| 28 |
22 27
|
mpbid |
|- ( ph -> ( seq M ( + , F ) ` N ) <_ ( seq M ( + , G ) ` N ) ) |