| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm0b |  |-  { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm | 
						
							| 2 |  | ral0 |  |-  A. x e. (/) A. y e. (/) A. z e. (/) ( ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) y ) ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) = ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ( y ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) ) | 
						
							| 3 |  | 0ex |  |-  (/) e. _V | 
						
							| 4 |  | eqid |  |-  { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } = { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } | 
						
							| 5 | 4 | grpbase |  |-  ( (/) e. _V -> (/) = ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ) | 
						
							| 6 | 3 5 | ax-mp |  |-  (/) = ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) | 
						
							| 7 |  | eqid |  |-  ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) = ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) | 
						
							| 8 | 6 7 | issgrp |  |-  ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp <-> ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm /\ A. x e. (/) A. y e. (/) A. z e. (/) ( ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) y ) ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) = ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ( y ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) ) ) ) | 
						
							| 9 | 1 2 8 | mpbir2an |  |-  { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp |