Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
ovex |
|- ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) e. _V |
6 |
|
eqid |
|- ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) |
7 |
5 6
|
fnmpti |
|- ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) Fn ( 0 ..^ ( # ` F ) ) |
8 |
1 2 3 4
|
signstfv |
|- ( F e. Word RR -> ( T ` F ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) ) |
9 |
8
|
fneq1d |
|- ( F e. Word RR -> ( ( T ` F ) Fn ( 0 ..^ ( # ` F ) ) <-> ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) Fn ( 0 ..^ ( # ` F ) ) ) ) |
10 |
7 9
|
mpbiri |
|- ( F e. Word RR -> ( T ` F ) Fn ( 0 ..^ ( # ` F ) ) ) |
11 |
|
hashfn |
|- ( ( T ` F ) Fn ( 0 ..^ ( # ` F ) ) -> ( # ` ( T ` F ) ) = ( # ` ( 0 ..^ ( # ` F ) ) ) ) |
12 |
10 11
|
syl |
|- ( F e. Word RR -> ( # ` ( T ` F ) ) = ( # ` ( 0 ..^ ( # ` F ) ) ) ) |
13 |
|
lencl |
|- ( F e. Word RR -> ( # ` F ) e. NN0 ) |
14 |
|
hashfzo0 |
|- ( ( # ` F ) e. NN0 -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
15 |
13 14
|
syl |
|- ( F e. Word RR -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
16 |
12 15
|
eqtrd |
|- ( F e. Word RR -> ( # ` ( T ` F ) ) = ( # ` F ) ) |