| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | fveq2 |  |-  ( f = F -> ( # ` f ) = ( # ` F ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( f = F -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 7 |  | simpl |  |-  ( ( f = F /\ i e. ( 0 ... n ) ) -> f = F ) | 
						
							| 8 | 7 | fveq1d |  |-  ( ( f = F /\ i e. ( 0 ... n ) ) -> ( f ` i ) = ( F ` i ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ( f = F /\ i e. ( 0 ... n ) ) -> ( sgn ` ( f ` i ) ) = ( sgn ` ( F ` i ) ) ) | 
						
							| 10 | 9 | mpteq2dva |  |-  ( f = F -> ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) = ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( f = F -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) = ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) | 
						
							| 12 | 6 11 | mpteq12dv |  |-  ( f = F -> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) ) | 
						
							| 13 |  | ovex |  |-  ( 0 ..^ ( # ` F ) ) e. _V | 
						
							| 14 | 13 | mptex |  |-  ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) e. _V | 
						
							| 15 | 12 3 14 | fvmpt |  |-  ( F e. Word RR -> ( T ` F ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) ) |