Metamath Proof Explorer


Theorem signstfv

Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
Assertion signstfv F Word T F = n 0 ..^ F W i = 0 n sgn F i

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 fveq2 f = F f = F
6 5 oveq2d f = F 0 ..^ f = 0 ..^ F
7 simpl f = F i 0 n f = F
8 7 fveq1d f = F i 0 n f i = F i
9 8 fveq2d f = F i 0 n sgn f i = sgn F i
10 9 mpteq2dva f = F i 0 n sgn f i = i 0 n sgn F i
11 10 oveq2d f = F W i = 0 n sgn f i = W i = 0 n sgn F i
12 6 11 mpteq12dv f = F n 0 ..^ f W i = 0 n sgn f i = n 0 ..^ F W i = 0 n sgn F i
13 ovex 0 ..^ F V
14 13 mptex n 0 ..^ F W i = 0 n sgn F i V
15 12 3 14 fvmpt F Word T F = n 0 ..^ F W i = 0 n sgn F i