Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Descartes's rule of signs
Counting sign changes in a word over real numbers
signstfv
Next ⟩
signstfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
signstfv
Description:
Value of the zero-skipping sign word.
(Contributed by
Thierry Arnoux
, 8-Oct-2018)
Ref
Expression
Hypotheses
signsv.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
signsv.w
⊢
W
=
Base
ndx
−
1
0
1
+
ndx
⨣
˙
signsv.t
⊢
T
=
f
∈
Word
ℝ
⟼
n
∈
0
..^
f
⟼
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
signsv.v
⊢
V
=
f
∈
Word
ℝ
⟼
∑
j
∈
1
..^
f
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
Assertion
signstfv
⊢
F
∈
Word
ℝ
→
T
⁡
F
=
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
Proof
Step
Hyp
Ref
Expression
1
signsv.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
2
signsv.w
⊢
W
=
Base
ndx
−
1
0
1
+
ndx
⨣
˙
3
signsv.t
⊢
T
=
f
∈
Word
ℝ
⟼
n
∈
0
..^
f
⟼
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
4
signsv.v
⊢
V
=
f
∈
Word
ℝ
⟼
∑
j
∈
1
..^
f
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
5
fveq2
⊢
f
=
F
→
f
=
F
6
5
oveq2d
⊢
f
=
F
→
0
..^
f
=
0
..^
F
7
simpl
⊢
f
=
F
∧
i
∈
0
…
n
→
f
=
F
8
7
fveq1d
⊢
f
=
F
∧
i
∈
0
…
n
→
f
⁡
i
=
F
⁡
i
9
8
fveq2d
⊢
f
=
F
∧
i
∈
0
…
n
→
sgn
⁡
f
⁡
i
=
sgn
⁡
F
⁡
i
10
9
mpteq2dva
⊢
f
=
F
→
i
∈
0
…
n
⟼
sgn
⁡
f
⁡
i
=
i
∈
0
…
n
⟼
sgn
⁡
F
⁡
i
11
10
oveq2d
⊢
f
=
F
→
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
=
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
12
6
11
mpteq12dv
⊢
f
=
F
→
n
∈
0
..^
f
⟼
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
=
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
13
ovex
⊢
0
..^
F
∈
V
14
13
mptex
⊢
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
∈
V
15
12
3
14
fvmpt
⊢
F
∈
Word
ℝ
→
T
⁡
F
=
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i