Metamath Proof Explorer


Theorem signstfv

Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
Assertion signstfv FWordTF=n0..^FWi=0nsgnFi

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 fveq2 f=Ff=F
6 5 oveq2d f=F0..^f=0..^F
7 simpl f=Fi0nf=F
8 7 fveq1d f=Fi0nfi=Fi
9 8 fveq2d f=Fi0nsgnfi=sgnFi
10 9 mpteq2dva f=Fi0nsgnfi=i0nsgnFi
11 10 oveq2d f=FWi=0nsgnfi=Wi=0nsgnFi
12 6 11 mpteq12dv f=Fn0..^fWi=0nsgnfi=n0..^FWi=0nsgnFi
13 ovex 0..^FV
14 13 mptex n0..^FWi=0nsgnFiV
15 12 3 14 fvmpt FWordTF=n0..^FWi=0nsgnFi